The correct answer is C) (5m^50 - 11n^8) (5m^50 + 11n^8)
We can tell this because of the rule regarding factoring the difference of two perfect squares. When we have two squares being multiplied, we can use the following rule.
a^2 - b^2 = (a - b)(a + b)
In this case, or first term is 25m^100. So we can solve that by setting it equal to a^2.
a^2 = 25m^100 -----> take the square root of both sides
a = 5m^50
Then we can do the same for the b term.
b^2 = 121n^16 ----->take the square root of both sides
b = 11n^8
Now we can use both in the equation already given
(a - b)(a + b)
(5m^50 - 11n^16)(5m^50 + 11n^16)
Answer:
17p
Step-by-step explanation:
Since you don't know how much Sanjay picked you can only explain as a variable. So just put 17 next to p which is 17*p
divide 486 by 9 = 54
it would take about 54 minutes
All three series converge, so the answer is D.
The common ratios for each sequence are (I) -1/9, (II) -1/10, and (III) -1/3.
Consider a geometric sequence with the first term <em>a</em> and common ratio |<em>r</em>| < 1. Then the <em>n</em>-th partial sum (the sum of the first <em>n</em> terms) of the sequence is

Multiply both sides by <em>r</em> :

Subtract the latter sum from the first, which eliminates all but the first and last terms:

Solve for
:

Then as gets arbitrarily large, the term
will converge to 0, leaving us with

So the given series converge to
(I) -243/(1 + 1/9) = -2187/10
(II) -1.1/(1 + 1/10) = -1
(III) 27/(1 + 1/3) = 18