Answer:
Step-by-step explanation:
Let A = R−{0}, the set of all nonzero real numbers, and consider the following relations on A × A.
Given that (a,b) R (c,d) if ![ad=bc](https://tex.z-dn.net/?f=ad%3Dbc)
Or (a,b) R (c,d) if determinant
![\left[\begin{array}{ccc}a&b\\c&d\end{array}\right] =0](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D%20%3D0)
a) Reflexive:
We have (a,b) R (a,b) because ab-ab =0 Hence reflexive
b) Symmetric
(a,b) R (c,d) gives ad-bc =0
Or da-cb =0 or cb-da =0 Hence (c,d) R(a,b). Hence symmetric