Answer: x{ 2,-1,0,-3}
Step-by-step explanation:
[x-2] [x+1] x[x+3]
now separate the equation n equate it to 0
[x-2]=0
[x+1]=0
x[x+3]=0
make x subject and solve for x
x= <u>2</u>
x= -1
x=0 and x= -3
Answer:
The answer is A
Step-by-step explanation:

Answer:
(1, 3)
Step-by-step explanation:
You are given the h coordinate of the vertex as 1, but in order to find the k coordinate, you have to complete the square on the parabola. The first few steps are as follows. Set the parabola equal to 0 so you can solve for the vertex. Separate the x terms from the constant by moving the constant to the other side of the equals sign. The coefficient HAS to be a +1 (ours is a -2 so we have to factor it out). Let's start there. The first 2 steps result in this polynomial:
. Now we factor out the -2:
. Now we complete the square. This process is to take half the linear term, square it, and add it to both sides. Our linear term is 2x. Half of 2 is 1, and 1 squared is 1. We add 1 into the set of parenthesis. But we actually added into the parenthesis is +1(-2). The -2 out front is a multiplier and we cannot ignore it. Adding in to both sides looks like this:
. Simplifying gives us this:

On the left we have created a perfect square binomial which reflects the h coordinate of the vertex. Stating this binomial and moving the -3 over by addition and setting the polynomial equal to y:

From this form,

you can determine the coordinates of the vertex to be (1, 3)
The value of the equivalent equation will be 32=3x+8
<h3>What will be the value of x?</h3>
It is given in the question that

Now from the antilog property property
can be written as below

So the value of
will be


Thus the value of the equivalent equation will be 32=3x+8
To know more about Antilog property follow
brainly.com/question/24556465
A) For this problem, we will need to use a normal calculation, in that we find the z-score and the area to the right using Table A.
z = (10 - 7.65) / 1.45
z = 1.62
area to the left for a z-score of 1.62 = 0.9474
area to the right for a z-score of 1.62 = 0.0526
The probability that a randomly selected ornament will cost more than $10 is 0.0526 or 5.26%.
B) For this problem, we will use the binomial probability formula since the problem is asking for the probability that exactly 3 ornaments cost over $10. There are two forms of this equation. One is <em>nCr x p^r x q^n-r</em> and the other is <em>(n r) x p^r x (1 - p)^n-r</em>. I will show both formulas below.
8C3 x 0.0526^3 x 0.9474^5
(8 3) x 0.0526^3 x 0.9474^5
With both equations, the answer is the same. Whichever you are more familiar or comfortable with is the one I would recommend you use.
The probability that exactly 3 of the 8 ornaments cost over $10 is 0.00622 or 0.622%.
Hope this helps!! :)