Answer:
I believe this is C) ecosystem impact
Explanation:
The interactions between human population dynamics and the environment have often been viewed mechanistically. This review elucidates the complexities and contextual specificities of population-environment relationships in a number of domains. It explores the ways in which demographers and other social scientists have sought to understand the relationships among a full range of population dynamics (e.g., population size, growth, density, age and sex composition, migration, urbanization, vital rates) and environmental changes. The chapter briefly reviews a number of the theories for understanding population and the environment and then proceeds to provide a state-of-the-art review of studies that have examined population dynamics and their relationship to five environmental issue areas. The review concludes by relating population-environment research to emerging work on human-environment systems.
Answer: She spun faster because her mass was closer to her center of rotation. The rate of spin increased to conserve angular momentum.
Explanation: plato answer
Here are two Eukaryotic cells Plant and Animal
Habitats of the plants:
X : winter or cold mountainous habitat
Y : desert habitat
Z: Aquatic habitat
Explanation:
The X plant leave morphology suggests that thick wax coating of leaf helps it to retain water in it. Such plants are called conifers. They are not shed every year so suitable for sunlight to be captured for photosynthesis. In cold regions heavy wind happens cone like leaf is able to resist the winds and prevent it from falling. The cone like structure of leaves help them let the snowfall.
The plant Y leaves and root morphology suggests that it is well suited for dry lands or desert as where less water is there. They store water for longer time when it rains because of the extensive root system. The spine leaves help in reduced transpiration as water scarcity is there.
The plant Z leaves morphology suggests that thin and ribbon structure leaves can help them resist the pressures of flowing water as there are air space in the leaves which provide buoyancy to the leaves.