1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
eimsori [14]
3 years ago
11

This extreme value problem has a solution with both a maximum value and a minimum value. Use Lagrange multipliers to find the ex

treme values of the function subject to the given constraint. f(x, y, z) = 8x + 8y + 4z; 4x2 + 4y2 + 4z2 = 36 maximum value minimum value
Mathematics
2 answers:
velikii [3]3 years ago
7 0

Answer:

The maximum value= 36

Minimum value = - 36

Step-by-step explanation:

Given that

f(x, y, z) = 8 x + 8 y + 4 z

h(x,y,z)=4 x² + 4 y² + 4 z² - 36

From Lagrange multipliers

Δf = λ Δh

Δf = < 8 ,8 , 4>

Δh = < 8 x ,8 y  , 8 z>

Δf = λ Δh

So

< 8 ,8 , 4> = < 8  λ x ,8 λ y  , 8 λ z>

8 = 8  λ x                     -------------1

8 = 8 λ y                      ----  ------2

4 = 8 λ z                    ----------------3

From equation 1 ,2 and 3

Now by putting the value of x,y and z in the following equation

4 x² + 4 y² + 4 z² = 36

4\times \dfrac{1}{\lambda^2 }+4\times \dfrac{1}{\lambda^2 }+4\times \dfrac{1}{(2\lambda)^2 }=36

\dfrac{4}{\lambda^2 }+ \dfrac{4}{\lambda^2 }+ \dfrac{1}{\lambda^2 }=36

So the value of λ is

\lambda =\pm \dfrac{1}{2}

When λ = 1/2

x = 1 / λ   , y=1 / λ   ,  z= 1 /2 λ

x= 2 , y = 2 , z=1

So

f(x, y, z) = 8 x + 8 y + 4 z

f(2, 2, 1) = 8 x 2 + 8 x 2 + 4 x 1

f(2, 2, 1) =36

When λ = - 1/2

x = 1 / λ   , y=1 / λ   ,  z= 1 /2 λ

x= - 2 , y = - 2 , z= - 1

So

f(x, y, z) = 8 x + 8 y + 4 z

f(-2, -2, -1) = 8 x (-2) + 8 x (-2) + 4 x (-1)

f(-2, -2, -1) = - 36

The maximum value= 36

Minimum value = - 36

Taya2010 [7]3 years ago
3 0

Answer:

Maximum value of f(x,y,z)=36 at (2,2,1)

Minimum value of f(x,y,z)=-36 at (-2,-2,-1)

Step-by-step explanation:

We are given that

f(x,y,z)=8x+8y+4z

g(x,y,z)=4x^2+4y^2+4z^2=36

We have to find the extreme values of the function using Lagrange multipliers.

f_x(x,y,z)=8

f_y(x,y,z)=8

f_z(x,y,z)=4

g_x(x,y,z)=8x

g_y(x,y,z)=8y

g_z(x,y,z)=8z

f_x=\lambda g_x

8=8x\lambda

x=\frac{1}{\lambda}

f_y=\lambda g_y

8=8y\lambda

y=\frac{1}{\lambda}

f_z=\lambda g_y

4=8z\lambda

z=\frac{1}{2\lambda}

Substitute the values in g(x,y,z)

4(\frac{1}{\lambda})^2+4(\frac{1}{\lambda})^2+4(\frac{1}{2\lambda})^2=36

\frac{4}{\lambda^2}+\frac{4}{\lambda^2}+\frac{1}{\lambda^2}=36

\frac{9}{\lambda^2}=36

\lambda^2=\frac{9}{36}=\frac{1}{4}

\lambda=\pm\frac{1}{2}

Substitute \lambda=\frac{1}{2}

x=2,y=2,z=1

Substitute \lambda=-\frac{1}{2}

x=-2,y=-2,z=-1

Now, f(2,2,1)=8(2)+8(2)+4(1)=16+16+4=36

f(-2,-2,-1)=8(-2)+8(-2)+4(-1)=-16-16-4=-36

Maximum value of f(x,y,z)=36 at (2,2,1)

Minimum value of f(x,y,z)=-36 at (-2,-2,-1)

You might be interested in
The figure is made up of 2 cones and a cylinder. The cones and cylinder have a 4 cm diameter.
Nina [5.8K]
20 cm is the answer good luck
4 0
3 years ago
PLEASEEEEEEE HELP SOMEONE WHO DOESNT NO MATH
Anuta_ua [19.1K]
No this is not a function because 4 is used twice on the y side
5 0
3 years ago
Read 2 more answers
Write an recursive formula for An, the nth term of the sequence<br> 5, -2, -9,
oksian1 [2.3K]

Given:

The given sequence is:

5,-2,-9,...

To find:

The recursive formula for a_n, the nth term of the sequence.

Solution:

We have,

5,-2,-9,...

Here, the first term is 5.

-2-5=-7

-9-(-2)=-9+2

-9-(-2)=-7

The common difference is -7.

The recursive formula for the nth term of the sequence is

a_n=a_{n-1}+d

Where, d is the common difference.

Putting d=-7 in the above formula, we get

a_n=a_{n-1}+(-7)

a_n=a_{n-1}-7

Therefore, the recursive formula for the nth term of the sequence is a_n=a_{n-1}-7.

3 0
3 years ago
Jill mixed 3/8 cup of water with 1 5/6 cups of sugar.how many more cups of sugar did he use in his mixture
kherson [118]
Jill had 1 11/24 more cups of sugar in his mixture that he used. 
1 5/6       1 20/24
-         → -
   3/8          9/24
_____     _______
                 1 11/24

4 0
3 years ago
Find the area?????????
Kazeer [188]
Area of a semi circle = pi * radius^2 / 2
3.14 * 5^2 / 2
3.14 * 25 / 2
78.5 / 2
39.5

Area of a rectangle = length * width
16 * 10
160

Add both of the areas
39.5 + 160
C. 199.5
6 0
3 years ago
Other questions:
  • Write the slope-intercept form of the equation of each line. 9x-7y=-7
    7·1 answer
  • Pomoże ktoś bardzo proszę o szybką odpowiedź
    6·1 answer
  • Determine the axis of symmetry for the function f(x) = −4(x + 7)2 − 3.
    7·1 answer
  • How to solve x^2-7=-x^2+1
    15·1 answer
  • Given: △ABC, E∈ AB m∠ABC=m∠ACE AB=34, AC=20 Find: AE
    5·1 answer
  • Help pls show work if needed
    10·1 answer
  • What expression is equivalent to (5x^2+3x+4)- (2x^2+1)-(7x+3)
    5·1 answer
  • Please help i’ll mark brilliant
    7·2 answers
  • Can someone please help me, im stuck. ​
    15·2 answers
  • Please help me please help me help please help me please
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!