Answer: c=5.4
The two roots are 3/5 and 9/5
Step-by-step explanation:
assume 5x2−12x c=0 is supposed to be 5x^2 - 12x + c = 0
p = (12 + sqrt(144-20c))/10
q = (12 - sqrt(144-20c))/10
p-3q=0,
1.2 + 0.1sqrt(144-20c) +
-3.6 + 0.3sqrt(144-20c) = 0
-2.4 + 0.4sqrt(144-20c) +2.4 = 2.4
sqrt(144-20c) = 2.4/0.4 = 6
144-20c=36
144-36=20c
c = 108/20 = 5.4
5x^2-12x+5.4=0
x = 3/5 or x = 9/5
By definition of tangent,
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
Recall the double angle identities:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
cos(2<em>θ</em>) = cos²(<em>θ</em>) - sin²(<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
where the latter equality follows from the Pythagorean identity, cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1. From this identity we can solve for the unknown value of sin(<em>θ</em>):
sin(<em>θ</em>) = ± √(1 - cos²(<em>θ</em>))
and the sign of sin(<em>θ</em>) is determined by the quadrant in which the angle terminates.
<em />
We're given that <em>θ</em> belongs to the third quadrant, for which both sin(<em>θ</em>) and cos(<em>θ</em>) are negative. So if cos(<em>θ</em>) = -4/5, we get
sin(<em>θ</em>) = - √(1 - (-4/5)²) = -3/5
Then
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
tan(2<em>θ</em>) = (2 sin(<em>θ</em>) cos(<em>θ</em>)) / (2 cos²(<em>θ</em>) - 1)
tan(2<em>θ</em>) = (2 (-3/5) (-4/5)) / (2 (-4/5)² - 1)
tan(2<em>θ</em>) = 24/7
Answer:
slope(m)=change in y/change in x
6=y-(-1)/x-4
6=y+1/x-4
6(x-4)=y+1
6x-24=y+1
6x-24-1=y
6x-25=y
hence this is the equation
It is equal when you round it off.
Answer:
19.20
Step-by-step explanation:
24%×80 = 24×80/100 = 1920/100 = 19.20