41.083 atm is the difference between the ideal pressure (as predicted by the ideal gas law) and the real pressure (as predicted by the van der Waals equation.
Explanation:
Data given for argon gas:
number of moles = 1 mole
volume = 0.5 L
Temperature = 19 degrees or 292.15 K
a= 1.345 (L2⋅atm)/mol2
b= 0.03219L/mol.
R = 0.0821
The real pressure equation given by Van der Waals equation:
P =( RT ÷ Vm-b) - a ÷ Vm^2
Putting the values in the equation:
P = (0.0821 x 292.15) ÷(0.5 - 0.03219) - 1.345÷ (0.5)^2
= 23.98÷0.4678 - 1.345 ÷0 .25
= 51.26 - 5.38
= 45.88 atm is the real pressure.
The pressure from the ideal gas law
PV =nRT
P =( 1 x 0.0821 x 292.15) ÷ 0.5
= 4.797 atm
the difference between the ideal pressure and real pressure is
Pressure by vander waal equation- Pressure by ideal gas law
45.88 - 4.797
= 41.083 atm.is the difference between the two.
*Warning* This is an educated guess
I would go with point B because it is at the lowest point on the map. Water always travels down, meaning, if no obstructions, it would travel to the ground closest to the Earth's center.
Hope this helps!