Note that you are subtracting 6 each time.
5 terms have been shown.
Multiply -6 with 7 (as you are trying to find the 12th term)
-6(7) = -42
Add - 42 with -25
(-42) + (-25) = -67
(D) -67 is your answer
hope this helps
193,800,000-31,300,00-23,200,000=139,300,000 is correct I think
Answer:50%
Step-by-step explanation:
General Idea:
Domain of a function means the values of x which will give a DEFINED output for the function.
Applying the concept:
Given that the x represent the time in seconds, f(x) represent the height of food packet.
Time cannot be a negative value, so

The height of the food packet cannot be a negative value, so

We need to replace
for f(x) in the above inequality to find the domain.
![-15x^2+6000\geq 0 \; \; [Divide \; by\; -15\; on\; both\; sides]\\ \\ \frac{-15x^2}{-15} +\frac{6000}{-15} \leq \frac{0}{-15} \\ \\ x^2-400\leq 0\;[Factoring\;on\;left\;side]\\ \\ (x+200)(x-200)\leq 0](https://tex.z-dn.net/?f=%20-15x%5E2%2B6000%5Cgeq%200%20%5C%3B%20%5C%3B%20%20%5BDivide%20%5C%3B%20by%5C%3B%20-15%5C%3B%20on%5C%3B%20both%5C%3B%20sides%5D%5C%5C%20%5C%5C%20%5Cfrac%7B-15x%5E2%7D%7B-15%7D%20%2B%5Cfrac%7B6000%7D%7B-15%7D%20%5Cleq%20%5Cfrac%7B0%7D%7B-15%7D%20%5C%5C%20%5C%5C%20x%5E2-400%5Cleq%200%5C%3B%5BFactoring%5C%3Bon%5C%3Bleft%5C%3Bside%5D%5C%5C%20%5C%5C%20%28x%2B200%29%28x-200%29%5Cleq%200%20)
The possible solutions of the above inequality are given by the intervals
. We need to pick test point from each possible solution interval and check whether that test point make the inequality
true. Only the test point from the solution interval [-200, 200] make the inequality true.
The values of x which will make the above inequality TRUE is 
But we already know x should be positive, because time cannot be negative.
Conclusion:
Domain of the given function is 
Answer:
D. 65.7-65.6
<em>(</em><em>the</em><em> </em><em>exact</em><em> </em><em>difference</em><em> </em><em>is</em><em> </em><em>10</em><em>.</em><em>1</em><em>,</em><em> </em><em>which</em><em> </em><em>is</em><em> </em><em>"</em><em>about</em><em>"</em><em> </em><em>1</em><em>0</em><em>)</em>