Answer:
26.14
Step-by-step explanation:
For the triangles: 3*4=12
For the circle: 28.27/2=14.135
12+14.135=26.135
~26.14
Answer:
123.5 square inches
Step-by-step explanation:
Given: To find the area of a rectangle, you have to multiply base times height.
To find the area of a triangle, you have to do base times height devided by 2.
Finding the area: Let's break up this shape into polygons. At the bottom there is a rectangle. We know that to find the area of the rectangle you have to do base times height. 13in•7in will give you <u>91in</u> square for the rectangle.
Now for the triangle. If you can see, if you break the triangle in half, there are 2 right triangles. Let's look at the right one for now. Since we know that to find the area of a triangle you have to do base times height divided by 2, you do 5in•6.5in=32.5in. 32.5in divided by 2 is <u>16.25in </u>square which is the area of one triangle. You might be wondering why i did 5•6.5, and that's because at the bottom of the rectangle you can see it's 13in, and 13in÷2=6.5in.
We already found the area of the rectangle and one triangle. The other triangle is equal to it so we can just do 16.25+16.25=<u>32.5in</u> square for both of the triangles.
Now we add it all up: 32.5+91=123.5 square inches
C = (pi) * d
C / (pi) = d
30 / 3.14 = d
9.55 = d
Answer:
0.75 mg
Step-by-step explanation:
From the question given above the following data were obtained:
Original amount (N₀) = 1.5 mg
Half-life (t₁/₂) = 6 years
Time (t) = 6 years
Amount remaining (N) =.?
Next, we shall determine the number of half-lives that has elapse. This can be obtained as follow:
Half-life (t₁/₂) = 6 years
Time (t) = 6 years
Number of half-lives (n) =?
n = t / t₁/₂
n = 6/6
n = 1
Finally, we shall determine the amount of the sample remaining after 6 years (i.e 1 half-life) as follow:
Original amount (N₀) = 1.5 mg
Half-life (t₁/₂) = 6 years
Number of half-lives (n) = 1
Amount remaining (N) =.?
N = 1/2ⁿ × N₀
N = 1/2¹ × 1.5
N = 1/2 × 1.5
N = 0.5 × 1.5
N = 0.75 mg
Thus, 0.75 mg of the sample is remaining.
Each person would receive 1 and an half cookies.
in other words 1 1/2