1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alina1380 [7]
3 years ago
14

4(4a-2b+5)+2(2a-5)=?

Mathematics
1 answer:
adoni [48]3 years ago
6 0

Answer:

=20a-8b+10

Step-by-step explanation:

4(4a-2b+5)+2(2a-5)

0pen parenthesis

=16a-8b+20+4a-10

Collect like terms

=16a+4a-8b+20-10

=20a-8b+10

Factorise

=2(10a-4b+5)

You might be interested in
A recent study done by the National Retail Federation found that 2019 back-to-school spending for all US households who have sch
MissTica

Answer:

Step-by-step explanation:

Hello!

The working variable is:

X: Back-to-school expense of a US household with school-aged children.

X~N(μ;σ²)

μ= $697

σ= $120

a. What is the probability that 2019 back-to-school spending for a US household with school-aged children is greater than $893?

Symbolically: P(X>$893)

First, you standardize the probability using Z= (X-μ)/σ ~N(0;1)

P(X>$893)= P(Z>(893-697)/120)= P(Z>1.63)

To resolve this question you have to use the table of cumulative probabilities for the standard normal distribution. These tables accumulate probabilities from the left, symbolically P(Z≤Z₀), so to reach probabilities greater than a Z₀ value you have to subtract the cumulative probability until that value from the maximum probability value 1:

P(Z>1.63)= 1 - P(Z≤1.63)= 1 - 0.94845= 0.05155

b. Provide the Z-score corresponding to the 2019 back-to-school spending of $1,200, and the probability of 2019 back-to-school spending for a household with school-aged children is less than $1,200.

P(X<$1200) = P(Z<(1200-697)/120)= P(Z<4.19)= 1

According to the empirical rule of the normal distribution, 99% of the data is between μ ± 3σ. This, logically, applies to the standard normal distribution. Considering that the distribution's mean is zero and the standard deviation is one, then 99% of the probabilities under the standard normal distribution are within the Z values: -3 and 3, values below -3 will have a probability equal to zero and values above 3 will have probability equal to one.

c. Find Q3 (Third Quartile).

Q3 in the value that marks three-quarters of the distribution, in other words, it has 75% of the distribution below it and 25% above, symbolically:

P(Z≤c)=0.75

In this case, you have to look in the center of the right Z-table (positive) for the probability of 0.75 and then the margins to find the Z-score that belongs to that cumulative probability:

c= 0.674

Now you reverse the standardization to see what value of X belongs to the Q3:

c= (X-μ)/σ

X= (c*σ)+μ

X= (0.674*120)+697= $777.88

d. Find Q1 (First Quartile)

To resolve this you have to follow the same steps as in c., just that this time you'll look for the value that marks the first quarter of the distribution, symbolically:

P(Z≤d)= 0.25

In this case, since the probability is below 0.5 you have to look for the Z value in the left table (negative).

d= -0.674

d= (X-μ)/σ

X= (d*σ)+μ

X= (-0.674*120)+697= $616.12

e. What is the value of the IQR for the distribution of 2019 back-to-school spending for a US household with school-aged children?

IQR= Q3-Q1= $777.88 - $616.12= $161.76

f. Interpret the value of the IQR from question 2e within the context of the problem.

$161.76 represents the distance between 75% of the Back-to-school expense of a US household 25% of the Back-to-school expense of US households.

g. What is the proportion of 2019 back-to-school spending within 1.50 standard deviations of the mean?

"Within 1.50 standard deviations of the mean" can be symbolized as "μ ± 1.5σ" or "μ - 1.5σ≤ Z ≤μ + 1.5σ"

P(μ - 1.5σ≤ Z ≤μ + 1.5σ)

Since the mean is zero and the standard deviation is one:

P(-1.5 ≤ Z ≤ 1.5)= P(Z≤1.5) - P(Z≤-1.5)= 0.933 - 0.067= 0.866

h. What is the 2019 back-to-school spending amount such that only 3% of households with school-age children spend more than this amount?

The "top" 3% means that you are looking for a value of the variable that has above it 0.03 of probability and below it 0.97%, first you look for this value under the standard normal distribution and then you reverse the standardization to reach the corresponding value of the variable:

P(Z>h)= 0.03 ⇒ P(Z≤h)=0.97

h= 1.881

h= (X-μ)/σ

X= (h*σ)+μ

X= ( 1.881*120)+697= $922.72

i. Which US household is more unusual, a US household with back-to-school spending of $600 or a US household with back-to-school spending of $900?

Under this kind of distribution, the "most usual" values are around the center (near the mean) and the "unusual" values will find themselves in the tails of the Gaussian bell.

To check which one is more unusual you have to see their distance with respect to the mean.

(X-μ)/σ

(600-697)/120= -0.8083

(900-697)/120= 1.69

An expense of $900 is more unusual than an expense of $600 (600 is almost the expected expenses)

j. Let's say the Smith family spent $815 on buying school supplies this fall. Provide an interpretation of the Smith family's 2019 back-to-school spending, i.e. what can you say about the percentage of all other US households with school-age children that have higher back-to-school spending than the Smith family?

P(X>$815) = P(Z>(815-697)/120)= P(Z>0.98)

1-P(Z≤0.983)= 0.837

83.7% of the families will have back-to-school expenses of $815 or more.

I hope it helps!

6 0
3 years ago
. If Triangle ABC is equilateral, solve for X... *<br> 7 (8x - 44)
Tasya [4]
If triangle ABC is equilateral,solve for X56x-308
5 0
4 years ago
Read 2 more answers
Which fractions are greater than -7/12
xeze [42]
We need to have some choices to give you the answer
3 0
3 years ago
2. Which of the following are terms of the series with nth term T-3n +17? a) 80 b) 170 c)217 d) 312 e) 278 f) 3566
pishuonlain [190]

Answer:

The correct options are a,b,e and f.

Step-by-step explanation:

It is given that the nth terms of the series is defined as

T_n=3n+17

Subtract 17 from both the sides.

T_n-17=3n

Divide both sides by 3.

\frac{T_n-17}{3}=n

The term Tₙ is a term of given series if n is a positive integer.

(a) The given term is 80.

n=\frac{80-17}{3}=21

Since n is a positive integer, therefore 80 is a term of given series.

(b) The given term is 170.

n=\frac{170-17}{3}=51

Since n is a positive integer, therefore 170 is a term of given series.

(c) The given term is 217.

n=\frac{217-17}{3}=66.67

Since n is not a positive integer, therefore 217 is a term of given series.

(d) The given term is 312.

n=\frac{312-17}{3}=98.33

Since n is not a positive integer, therefore 312 is a term of given series.

(e) The given term is 278.

n=\frac{278-17}{3}=87

Since n is a positive integer, therefore 278 is a term of given series.

(f) The given term is 3566.

n=\frac{3566-17}{3}=1183

Since n is a positive integer, therefore 3566 is a term of given series.

Thus, the correct options are a, b, e and f.

7 0
3 years ago
Two parallel lines are crossed by a transversal. Vertical and parallel lines h and i are cut by transversal g. At the intersecti
eduard

Answer:

x = 70

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • You want to draw 3 cards from a standard deck of 52 cards without replacing them. How many (no commas needed) outcomes can be pr
    9·2 answers
  • Chris cut a rope into two pieces. One piece was 11.36 meters long and the other piece was 13.46 meters long. About how long was
    14·2 answers
  • Which statement could be used to explain why f(x) = 2x - 3 has an inverse relation that is a function
    14·1 answer
  • .
    12·1 answer
  • Find the value of x so that the ratios are equivalent 9:x and 54:8
    6·1 answer
  • Answer you get brainliest and we can be buddies. (i am very loney)
    8·2 answers
  • What is the value of x in the diagram below? If necessary, round your answer
    14·2 answers
  • Given XY = 15, WX = 22, ZX = 32, WT = 10. mZWZY = 62°, mZWXT = 27°, and mZZWT = 77º.
    14·2 answers
  • Please help quickly!!!!!
    8·2 answers
  • Which three examples best describe how geometry can be used in the field of aeronautics?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!