If she asks you that, she wants you to find the circumference of the pan.
Answer:

Step-by-step explanation:
fjhjthfdvhfjrhgehdhrjfhdrhjthr
Answer:
b .
Area=(x-5) (x-3)
Area = x^2 -8x+15
Step-by-step explanation:
Hi, to answer this question we have to apply the next formula:
Area of a rectangle = width x length
The original length and width was x, so if the stage needs to be 5 feet narrower and 3 feet shorter.
x-5
x-5
The formula is:
A=(x-5) (x-3)
Solving:
A = (x.x) + (x.-3) + (-5.x)+ (-5.-3)
A = x^2 -3x -5x+15
A = x^2 -8x+15
1)volume of the pipeline
The pipeline is a cylinder, therefore;
Volume (cylinder)=πr²h
r=radius
h=height of the cylinder
diameter=6 in*(1 ft / 12 in)=0.5 ft
raius=diameter / 2=0.5 ft / 2=0.25 ft.
height=5280 ft
Volume (pipeline)=π(0.25 ft)²(5280 ft)=330π ft³≈1036.73 ft³.
2) we calculate the number of barrel
1 mile of oil in this pipeline is 330π ft³ of oil.
1 barrel of crude------------------5.61 ft³
x----------------------------------330π ft³
x=(1 barrel*330π ft³) / 5.61 ft³=184.8 barrels
3) we calculate the price.
1 barrel---------------$100
184.8 barrels---------- x
x=(184.8 barrels * $100) / 1 barrel=$18,480
Solution: ≈$18,480
Answer:
The answer is "
"
Step-by-step explanation:
When the value of
has the following properties:


Calculating the value of
:
![= 13 \times [ \cos(1.75 \pi ) + i \sin(1.75 \pi) ] \\\\= 13 \times[\cos(1.75 \pi - 2\pi ) + \ i \sin(1.75 \pi - 2\pi )]\\ \\= 13 \times [\cos(-0.25 \pi ) +\ i \sin(-0.25 \pi) ]\\\\= 13 \times [0.707106781 - 0.707106781]\\\\ =9.19 - 9.19\ i \\\\](https://tex.z-dn.net/?f=%3D%2013%20%5Ctimes%20%5B%20%5Ccos%281.75%20%5Cpi%20%29%20%2B%20i%20%5Csin%281.75%20%5Cpi%29%20%5D%20%5C%5C%5C%5C%3D%20%2013%20%5Ctimes%5B%5Ccos%281.75%20%5Cpi%20-%202%5Cpi%20%29%20%2B%20%5C%20i%20%5Csin%281.75%20%5Cpi%20-%202%5Cpi%20%29%5D%5C%5C%20%5C%5C%3D%2013%20%5Ctimes%20%5B%5Ccos%28-0.25%20%5Cpi%20%29%20%2B%5C%20%20i%20%5Csin%28-0.25%20%5Cpi%29%20%5D%5C%5C%5C%5C%3D%2013%20%5Ctimes%20%5B0.707106781%20-%200.707106781%5D%5C%5C%5C%5C%20%3D9.19%20-%209.19%5C%20i%20%5C%5C%5C%5C)