The cross product of the normal vectors of two planes result in a vector parallel to the line of intersection of the two planes.
Corresponding normal vectors of the planes are
<5,-1,-6> and <1,1,1>
We calculate the cross product as a determinant of (i,j,k) and the normal products
i j k
5 -1 -6
1 1 1
=(-1*1-(-6)*1)i -(5*1-(-6)1)j+(5*1-(-1*1))k
=5i-11j+6k
=<5,-11,6>
Check orthogonality with normal vectors using scalar products
(should equal zero if orthogonal)
<5,-11,6>.<5,-1,-6>=25+11-36=0
<5,-11,6>.<1,1,1>=5-11+6=0
Therefore <5,-11,6> is a vector parallel to the line of intersection of the two given planes.
✧・゚: *✧・゚:* *:・゚✧*:・゚✧
Hello!
✧・゚: *✧・゚:* *:・゚✧*:・゚✧
❖ The length of the field is 91 m.
Divide to find the missing length:
4641 ÷ 51 = 91
~ ʜᴏᴘᴇ ᴛʜɪꜱ ʜᴇʟᴘꜱ! :) ♡
~ ᴄʟᴏᴜᴛᴀɴꜱᴡᴇʀꜱ
Answer: 1/20
Step-by-step explanation:
Decimal Fraction Percentage
0.05 1/20 5%
Answer:
y+2=1/2(x+1)
Step-by-step explanation:
m=(y2-y1)/(x2-x1)
m=(0-(-2))/(3-(-1))
m=(0+2)/(3+1)
m=2/4
m=1/2
y-y1=m(x-x1)
y-(-2)=1/2(x-(-1))
y+2=1/2(x+1)
Answer:
0.1 ML
Step-by-step explanation: