The explanation for this is one of my favorite pieces of mathematical reasoning. First, let's thing about distance; what's the shortest distance between two points? <em>A straight line</em>. If we just drew a straight line between A and B, though, we'd be missing a crucial element of the original problem: we also need to pass through a point on the line (the "river"). Here's where the mathemagic comes in.
If we take the point B and <em>reflect it over the line</em>, creating the point B' (see picture 1), we can draw a line straight from A to B' that passes through a point on the line. Notice the symmetry here; the distance from the intersection point to B' is<em> the same as its distance to B</em>. So, if we reflect that segment back up, we'll have a path to B, and because it came from of the line segment AB', we know that it's <em>the shortest possible distance that includes a point on the line</em>.
If we apply this same process to our picture, we see that the line segment AB' crosses the line
at the point (1, 1)
Answer:
the answer is 202.5 ml
Step-by-step explanation:
134134 · $3.00 = $402,402
Answer:
BM = 9.5
Step-by-step explanation:
4.4x2.5=11
so
3.8x2.5=9.5
Answer:
search google for answer
Step-by-step explanation: