Answer:
Carbon dioxide
Explanation:
The alveoli picks up the oxygen you breathe in and releases the outgoing waste product carbon dioxide
Answer: food chains or webs
In an ecosystem, energy from the sun is transferred by the way of food chains or webs. A food chain is a linear sequence of organisms through which food and energy is passed as one organism eats the another. A food web is the interconnection or relation of food chains. In a food chain energy is distributed among the trophic levels. Plants are primary producers which traps energy from sun for photosynthesis and belong to first trophic level in the food chain. The energy of sun present in plants is transferred to subsequent higher trophic levels when plants are consumed by other organisms.
<span>There are numerous proteins in muscle. The main two are thin actin filaments and thick myosin filaments. Thin filaments form a scaffold that thick filaments crawl up. There are many regulatory proteins such as troponin I, troponin C, and tropomyosin. There are also proteins that stabilize the cells and anchor the filaments to other cellular structures. A prime example of this is dystrophin. This protein is thought to stabilize the cell membrane during contraction and prevent it from breaking. Those who lack completely lack dystrophin have a disorder known as Duchene muscular dystrophy. This disease is characterized by muscle wasting begininng in at a young age and usually results in death by the mid 20s. The sarcomere is the repeating unit of skeletal muscle.
Muscle cells contract by interactions of myosin heads on thick filament with actin monomers on thin filament. The myosin heads bind tightly to actin monomers until ATP binds to the myosin. This causes the release of the myosin head, which subsequently swings foward and associates with an actin monomer further up the thin filament. Hydrolysis and of ATP and the release of ADP and a phosphate allows the mysosin head to pull the thick filament up the thin filament. There are roughly 500 myosin heads on each thick filament and when they repeatedly move up the thin filament, the muscle contracts. There are many regulatory proteins of this contraction. For example, troponin I, troponin C, and tropomyosin form a regulatory switch that blocks myosin heads from binding to actin monomers until a nerve impulse stimulates an influx of calcium. This causes the switch to allow the myosin to bind to the actin and allows the muscle to contract. </span><span>
</span>
Answer:
A. NADH and FADH2 both donate electrons at the same location.
Explanation:
In the respiratory chain, four large protein complexes inserted into the mitochondrial inner membrane transport NADH and FADH₂ electrons (formed in glycolysis and the Krebs cycle) to oxygen gas, reducing them to NAD⁺ and FAD, respectively.
These electrons have great affinity for oxygen gas and, when combined with it, reduce it to water molecules at the end of the reaction.
Oxygen gas effectively participates in cellular respiration at this stage, so its absence would imply interruption of the process.
NADH and FADH₂ electrons, when attracted to oxygen, travel a path through protein complexes, releasing energy in this process.
The energy released by the NADH and FADH₂ electrons in the respiratory chain in theory yields <u>34</u> <u>ATP</u>, however, under normal conditions an average of 26 ATP molecules is formed.
If we consider that these 26 molecules are added to the two ATP formed in glycolysis and two ATP formed in the Krebs cycle, it can be said that cellular respiration reaches a maximum yield of 30 ATP per glucose molecule, although theoretically this number was 38 ATP per glucose molecule.
<span>Taxol block the depolymerization of the microtubule that occurs during the anaphase of M phase in which the chromosomes are pulled towards opposite pole. Due to lack of pulling, separation of the chromosomes is not possible. Hence the cells will be arrested at M phase checkpoint</span>