Answer:
The product of glycolysis is two molecules of pyruvate. It is a three-carbon compound. This pyruvate again undergoes oxidation in the cytoplasm. This process is called pyruvate oxidation which produces Acetyl CoA. The Acetyl CoA is a two-carbon molecule.
Acetyl CoA again used for the citric acid cycle. This is also called as Kreb's cycle / TCA cycle. Because citric acid has 3 carboxylic groups. The acetyl coenzyme produces NADH, FADH2, ATP. The citric acid cycle occurs in the mitochondrial membrane. This is an 8 step process. The first product is citric acid. The other products of each step are isocitrate, alpha-ketoglutarate, succinyl CoA, succinate, Fumarate, L - malate, and Oxaloacetate (OAA).
Another process of aerobic respiration is the electron transport chain ( ETS). Here the energy stored in NADH, FADH2 in the citric acid cycle are utilized. It is a chain of electron carriers. ETS occurs in the inner membrane of mitochondria.
In short, the glucose splits by glycolysis and produces ATP, NADPH, and final product pyruvate. The pyruvate is oxidized and forms acetyle coenzyme. This is used in the TCA / citric acid cycle. In this process also NADH, FADH2 which forms electrons are produced. Theses electrons are carried by different electron carriers and accepted by oxygen.
In the process of pyruvate oxidation 6 ATP, and in Kreb's cycle 18 ATPs, in ETS, 4 ATPs are produced. In addition to this in glycolysis produces 4 ATPs. The total number of ATP in aerobic respiration is 32 ATP.
Nerve cells because skin cells keep dividing when you loose skin. Epithelial cells also divide when you loose others.
Answer:
The scale and arrangement of the minerals or grains that make up a rock are referred to as its texture. Textures of Igneous Rock Compositions and Igneous Rock.
Explanation:
Answer:
aa
Explanation:
the answer is pretty obvious it would be a a because a dominant allele would be to Capitol a and a lower capital a and one capital a would be a mix and a purebred would be to lowercase A's
Answer:
Even in pure water ions tend to form due to random processes (producing some H+ and OH- ions). The amount of H+ that is made in pure water is about equal to a pH of 7. That's why 7 is neutral. ... In pure water near room temperature, the concentration of H+ is about 10-7 moles/liter, which gives a pH of 7.