Answer:
a) Percentage of students scored below 300 is 1.79%.
b) Score puts someone in the 90th percentile is 638.
Step-by-step explanation:
Given : Suppose a student's score on a standardize test to be a continuous random variable whose distribution follows the Normal curve.
(a) If the average test score is 510 with a standard deviation of 100 points.
To find : What percentage of students scored below 300 ?
Solution :
Mean
,
Standard deviation 
Sample mean 
Percentage of students scored below 300 is given by,






Percentage of students scored below 300 is 1.79%.
(b) What score puts someone in the 90th percentile?
90th percentile is such that,

Now, 






Score puts someone in the 90th percentile is 638.
<span>N(t) = 16t ; Distance north of spot at time t for the liner.
W(t) = 14(t-1); Distance west of spot at time t for the tanker.
d(t) = sqrt(N(t)^2 + W(t)^2) ; Distance between both ships at time t.
Let's create a function to express the distance north of the spot that the luxury liner is at time t. We will use the value t as representing "the number of hours since 2 p.m." Since the liner was there at exactly 2 p.m. and is traveling 16 kph, the function is
N(t) = 16t
Now let's create the same function for how far west the tanker is from the spot. Since the tanker was there at 3 p.m. (t = 1 by the definition above), the function is slightly more complicated, and is
W(t) = 14(t-1)
The distance between the 2 ships is easy. Just use the pythagorean theorem. So
d(t) = sqrt(N(t)^2 + W(t)^2)
If you want the function for d() to be expanded, just substitute the other functions, so
d(t) = sqrt((16t)^2 + (14(t-1))^2)
d(t) = sqrt(256t^2 + (14t-14)^2)
d(t) = sqrt(256t^2 + (196t^2 - 392t + 196) )
d(t) = sqrt(452t^2 - 392t + 196)</span>
Answer:
It has no value.
Step-by-step explanation:
Your doctor wants you to take 12 tablets per day.
Each tablet is 250 mg, so 4 tablets make 1g.
4 tablets x 3g = 12 tablets a day