We know that :



Using above ideas we can solve the Problem :
⇒ 
⇒ ![ln(x - 3) - ln(x + 3)^\frac{3}{8} = ln[\frac{(x - 3)}{(x + 3)^\frac{3}{8}}]](https://tex.z-dn.net/?f=ln%28x%20-%203%29%20-%20ln%28x%20%2B%203%29%5E%5Cfrac%7B3%7D%7B8%7D%20%3D%20ln%5B%5Cfrac%7B%28x%20-%203%29%7D%7B%28x%20%2B%203%29%5E%5Cfrac%7B3%7D%7B8%7D%7D%5D)
⇒ ![4ln[\frac{(x - 3)}{(x + 3)^\frac{3}{8}}] = ln[\frac{(x - 3)}{(x + 3)^\frac{3}{8}}]^4 = ln[\frac{(x - 3)^4}{(x + 3)^\frac{3}{2}}]](https://tex.z-dn.net/?f=4ln%5B%5Cfrac%7B%28x%20-%203%29%7D%7B%28x%20%2B%203%29%5E%5Cfrac%7B3%7D%7B8%7D%7D%5D%20%3D%20ln%5B%5Cfrac%7B%28x%20-%203%29%7D%7B%28x%20%2B%203%29%5E%5Cfrac%7B3%7D%7B8%7D%7D%5D%5E4%20%3D%20ln%5B%5Cfrac%7B%28x%20-%203%29%5E4%7D%7B%28x%20%2B%203%29%5E%5Cfrac%7B3%7D%7B2%7D%7D%5D)
⇒ ![\frac{1}{3}lnx + ln[\frac{(x - 3)^4}{(x + 3)^\frac{3}{2}}] = ln(x)^\frac{1}{3} + ln[\frac{(x - 3)^4}{(x + 3)^\frac{3}{2}}] = ln[\frac{\sqrt[3]{x}(x - 3)^4}{\sqrt{(x + 3)^{3}}}]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B3%7Dlnx%20%2B%20ln%5B%5Cfrac%7B%28x%20-%203%29%5E4%7D%7B%28x%20%2B%203%29%5E%5Cfrac%7B3%7D%7B2%7D%7D%5D%20%3D%20ln%28x%29%5E%5Cfrac%7B1%7D%7B3%7D%20%2B%20ln%5B%5Cfrac%7B%28x%20-%203%29%5E4%7D%7B%28x%20%2B%203%29%5E%5Cfrac%7B3%7D%7B2%7D%7D%5D%20%3D%20ln%5B%5Cfrac%7B%5Csqrt%5B3%5D%7Bx%7D%28x%20-%203%29%5E4%7D%7B%5Csqrt%7B%28x%20%2B%203%29%5E%7B3%7D%7D%7D%5D)
Option 3 is the Answer
1/2(x + 4) = -12
1/2x + 2 = -12
1/2x = -10
x = -20
Answer:
there is equal probability for each outcome
Step-by-step explanation:
Let's say you are flipping a coin.
The possible outcomes are : Head and Tail
Probability(Head) = 1/2
Probability(Tail) = 1/2
In this case, there is equal theoretical probability of each outcome
85 / 5
(50 + 35) / 5 =
(50/5) + (35/5) =
10 + 7 = 17
X = total sales
y = sharon's commision earnings
Since Sharon makes 4% of the total sales, we want to calculate how many sales equate to a $150 return. Since 4% = .04, the solution would be :
y = .04 x
150 = .04 x
150/.04 = x
3750 = x