Let's do this by Briot-Ruffini
First: Find the monomial root
x - 2 = 0
x = 2
Second: Allign this root with all the other coeficients from equation
Equation = -3x³ - 2x² - x - 2
Coeficients = -3, -2, -1, -2
2 | -3 -2 -1 -2
Copy the first coeficient
2 | -3 -2 -1 -2
-3
Multiply him by the root and sum with the next coeficient
2.(-3) = -6
-6 + (-2) = -8
2 | -3 -2 -1 -2
-3 -8
Do the same
2.(-8) = -16
-16 + (-1) = -17
2 | -3 -2 -1 -2
-3 -8 -17
The same,
2.(-17) = -34
-34 + (-2) = -36
2 | -3 -2 -1 -2
-3 -8 -17 -36
Now you just need to put the "x" after all these numbers with one exponent less, see
2 | -3x³ - 2x² - 1x - 2
-3x² - 8x - 17 -36
You may be asking what exponent -36 should be, and I say:
None or the monomial. He's like the rest of this division, so you can say:
(-3x³ - 2x² - x - 2)/(x - 2) = -3x² - 8x - 17 with rest -36 or you can say:
(-3x³ - 2x² - x - 2)/(x - 2) = -3x² - 8x - 17 - 36/(x - 2)
Just divide the rest by the monomial.
Answer:
60
Step-by-step explanation:
60* of the circumference would be 60-the total circumference.
To check which ordered pair (point) is in the solution set of the system of given linear inequalities y>x, y<x+1; we just need to plug given points into both inequalities and check if that point satisfies both inequalities or not. If any point satisfies both inequalities then that point will be in solution.
I will show you calculation for (5,-2)
plug into y>x
-2>5
which is clearly false.
plug into y<x+1
-2<5+1
or -2<6
which is also false.
hence (5,-2) is not in the solution.
Same way if you test all the given points then you will find that none of the given points are satisfying both inequalities.
Hence answer will be "No Solution from given choices".
Pretty sure the mean is 5
Answer:
The ladder reaches 4.8 ft up the wall
Step-by-step explanation: