Answer:
Step-by-step explanation:
y(y+2)=y²-6
y²+2y=y²-6
2y=-6
y=-3
2[x-(1-3x)]=3(x+1)
2[x-1+3x]=3x+3
2(4x-1)=3x+3
8x-2=3x+3
8x-3x=3+2
5x=5
x=1
<h3><u><em>Answer: The answer is 15</em></u></h3><h3><em><u /></em></h3><h3><em><u /></em></h3><h3><u><em>Step-by-step explanation:</em></u></h3>
<em><u /></em>
Answer:
12.5
Step-by-step explanation:
I think
Answer:
<em>Cathy was born in 1980 and she was 18 years old in 1998</em>
Step-by-step explanation:
<u>Equations</u>
This is a special type of equations where all the unknowns must be integers and limited to a range [0,9] because they are the digits of a number.
Let's say Cathy was born in the year x formed by the ordered digits abcd. A number expressed by its digits can be calculated as

In 1998, Cathy's age was

And it must be equal to the sum of the four digits

Rearranging

We are sure a=1, b=9 because Cathy's age is limited to having been born in the same century and millennium. Thus

Operating

If now we try some values for c we notice there is only one possible valid combination, since c and d must be integers in the range [0,9]
c=8, d=0
Thus, Cathy was born in 1980 and she was 18 years old in 1998. Note that 1+9+8+0=18
Given a Venn diagram showing the number of students that like blue uniform only as 32, the number of students that like gold uniform only as 25, the number of students that like blue and gold uniforms as 12 and the number of students that like neither blue nor gold uniform as 6.
Thus, the total number of students interviewed is 75.
Recall that relative frequency of an event is the outcome of the event divided by the total possible outcome of the experiment.
From the relative frequency table, a represent the relative frequency of the students that like gold but not blue.
From the Venn, diagram, the number of students that like gold uniform only as 25, thus the relative frequency of the students that like gold but not blue is given by

Therefore,
a = 33% to the nearest percent.
Similarly, from the relative frequency table, b represent the relative frequency of the students that like blue but not gold.
From
the Venn, diagram, the number of students that like blue uniform only
as 32, thus the relative frequency of the students that like gold but
not blue is given by

Therefore,
b = 43% to the nearest percent.