1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
makvit [3.9K]
4 years ago
15

If ,

}{2}" alt="\frac{a}{b}=\frac{3}{2}" align="absmiddle" class="latex-formula"> then 8a equals which of the following?
A) 16b
B) \frac{3b}{2}
C) \frac{8}{3}b
D) 12b
Mathematics
1 answer:
kaheart [24]4 years ago
6 0
12b - if b = 2 and a = 3
12b = 8a
24 = 24

So D
You might be interested in
What is 16 divided by X^2 equals 8 divided by X + 6?
zaharov [31]
Solve: \frac{16}{x^{2}} = \frac{8}{x + 6}

\frac{16}{x^{2}} = \frac{8}{x + 6}

\text{Cross multiply: } 16(x + 6) = 8x^{2}
\text{Simplify: } 2(x + 6) = x^{2}
\text{Expand: } 2x + 12 = x^{2}

\text{Solve for x: } x^{2} - 2x - 12 = 0

\text{Use the quadratic equation: } x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}
x = \frac{2 \pm \sqrt{4 + 48}}{2}
x = \frac{2 \pm \sqrt{52}}{2}
x = \frac{2 \pm \sqrt{13 \cdot 4}}{2}

x = \frac{2 \pm 2\sqrt{13}}{2}
\therefore x = 1 \pm \sqrt{13}
7 0
3 years ago
4(-x+4) =12 solve for x
VashaNatasha [74]

Answer: x=1

Step-by-step explanation:

   4 (-x+4)=12

 (-4x+16)=12

  -4x+16-16  =12-16

         -4x/-4 =-4/-4

                  x=1

I don't know if this is right, please let me know if it is wrong ο(=•ω<=)ρ⌒☆

4 0
4 years ago
Help me pleaseeeeeeee
Scilla [17]
(x+51)+(x+59)+84=180 (Sum of angles in a triangle)
2x= 180-194= -14
x=-7

Angle A: x+51=-7+51=44°
6 0
3 years ago
Read 2 more answers
How to solve this trig
n200080 [17]

Hi there!

To find the Trigonometric Equation, we have to isolate sin, cos, tan, etc. We are also given the interval [0,2π).

<u>F</u><u>i</u><u>r</u><u>s</u><u>t</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>

What we have to do is to isolate cos first.

\displaystyle  \large{ cos \theta =  -  \frac{1}{2} }

Then find the reference angle. As we know cos(π/3) equals 1/2. Therefore π/3 is our reference angle.

Since we know that cos is negative in Q2 and Q3. We will be using π + (ref. angle) for Q3. and π - (ref. angle) for Q2.

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>2</u>

\displaystyle \large{ \pi -  \frac{ \pi}{3}  =  \frac{3 \pi}{3}  -  \frac{  \pi}{3} } \\  \displaystyle \large \boxed{ \frac{2 \pi}{3} }

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>3</u>

<u>\displaystyle \large{ \pi  +   \frac{ \pi}{3}  =  \frac{3 \pi}{3}   +   \frac{  \pi}{3} } \\  \displaystyle \large \boxed{ \frac{4 \pi}{3} }</u>

Both values are apart of the interval. Hence,

\displaystyle \large \boxed{ \theta =  \frac{2 \pi}{3} , \frac{4 \pi}{3} }

<u>S</u><u>e</u><u>c</u><u>o</u><u>n</u><u>d</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>

Isolate sin(4 theta).

\displaystyle \large{sin 4 \theta =  -  \frac{1}{ \sqrt{2} } }

Rationalize the denominator.

\displaystyle \large{sin4 \theta =  -  \frac{ \sqrt{2} }{2} }

The problem here is 4 beside theta. What we are going to do is to expand the interval.

\displaystyle \large{0 \leqslant  \theta < 2 \pi}

Multiply whole by 4.

\displaystyle \large{0 \times 4 \leqslant  \theta \times 4 < 2 \pi \times 4} \\  \displaystyle \large \boxed{0 \leqslant 4 \theta < 8 \pi}

Then find the reference angle.

We know that sin(π/4) = √2/2. Hence π/4 is our reference angle.

sin is negative in Q3 and Q4. We use π + (ref. angle) for Q3 and 2π - (ref. angle for Q4.)

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>3</u>

<u>\displaystyle \large{ \pi +  \frac{ \pi}{4}  =  \frac{ 4 \pi}{4}  +  \frac{ \pi}{4} } \\  \displaystyle \large \boxed{  \frac{5 \pi}{4} }</u>

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>4</u>

\displaystyle \large{2 \pi -  \frac{ \pi}{4}  =  \frac{8 \pi}{4}  -  \frac{ \pi}{4} } \\  \displaystyle \large \boxed{ \frac{7 \pi}{4} }

Both values are in [0,2π). However, we exceed our interval to < 8π.

We will be using these following:-

\displaystyle \large{ \theta + 2 \pi k =  \theta \:  \:  \:  \:  \:  \sf{(k  \:  \: is \:  \: integer)}}

Hence:-

<u>F</u><u>o</u><u>r</u><u> </u><u>Q</u><u>3</u>

\displaystyle \large{ \frac{5 \pi}{4}  + 2 \pi =  \frac{13 \pi}{4} } \\  \displaystyle \large{ \frac{5 \pi}{4}  + 4\pi =  \frac{21 \pi}{4} } \\  \displaystyle \large{ \frac{5 \pi}{4}  + 6\pi =  \frac{29 \pi}{4} }

We cannot use any further k-values (or k cannot be 4 or higher) because it'd be +8π and not in the interval.

<u>F</u><u>o</u><u>r</u><u> </u><u>Q</u><u>4</u>

\displaystyle \large{ \frac{ 7 \pi}{4}  + 2 \pi =  \frac{15 \pi}{4} } \\  \displaystyle \large{ \frac{ 7 \pi}{4}  + 4 \pi =  \frac{23\pi}{4} } \\  \displaystyle \large{ \frac{ 7 \pi}{4}  + 6 \pi =  \frac{31 \pi}{4} }

Therefore:-

\displaystyle \large{4 \theta =  \frac{5 \pi}{4} , \frac{7 \pi}{4} , \frac{13\pi}{4} , \frac{21\pi}{4} , \frac{29\pi}{4}, \frac{15 \pi}{4} , \frac{23\pi}{4} , \frac{31\pi}{4}  }

Then we divide all these values by 4.

\displaystyle \large \boxed{\theta =  \frac{5 \pi}{16} , \frac{7 \pi}{16} , \frac{13\pi}{16} , \frac{21\pi}{16} , \frac{29\pi}{16}, \frac{15 \pi}{16} , \frac{23\pi}{16} , \frac{31\pi}{16}  }

Let me know if you have any questions!

3 0
3 years ago
Mia can purchase a 40 ounce jar of peanut butter for $5.20 or a 15 once jar for 2.70. how much does mia save per ounce by buying
melomori [17]
Cost per ounce for the 40-ounce peanut butter is 
$5.20/40 = $0.13
cost per ounce for the 15-ounce peanut butter is 
$2.70 / 15 = $ 0.18
Mia saves 5 cents or $0.05
7 0
4 years ago
Other questions:
  • The table represents the linear function f(x), and the equation represents the linear function g(x). Compare the y-intercepts an
    12·2 answers
  • Can someone help me figure out this answer
    12·2 answers
  • Spiral Review (Reviews 2.G.A.1, 2.G.A.3, 3.0A.0.9)
    13·1 answer
  • 42_(9+6)value 27 true or false why
    13·1 answer
  • Find the distance between the pair of points given on the graph.
    12·1 answer
  • 5x + 9 equals 2x + 12. What is the value of x?
    11·1 answer
  • F9
    5·1 answer
  • The 5th grade class sells items from the snack cart each week to earn money for camp. They sold 70 items to the 7th grade class
    12·2 answers
  • Find the indicated values
    7·1 answer
  • Javier, an artist, plans to paint and sell some miniature paintings. He just bought some brushes for $1, and paint and canvas fo
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!