1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nuetrik [128]
3 years ago
6

How to solve this trig

Mathematics
1 answer:
n200080 [17]3 years ago
3 0

Hi there!

To find the Trigonometric Equation, we have to isolate sin, cos, tan, etc. We are also given the interval [0,2π).

<u>F</u><u>i</u><u>r</u><u>s</u><u>t</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>

What we have to do is to isolate cos first.

\displaystyle  \large{ cos \theta =  -  \frac{1}{2} }

Then find the reference angle. As we know cos(π/3) equals 1/2. Therefore π/3 is our reference angle.

Since we know that cos is negative in Q2 and Q3. We will be using π + (ref. angle) for Q3. and π - (ref. angle) for Q2.

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>2</u>

\displaystyle \large{ \pi -  \frac{ \pi}{3}  =  \frac{3 \pi}{3}  -  \frac{  \pi}{3} } \\  \displaystyle \large \boxed{ \frac{2 \pi}{3} }

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>3</u>

<u>\displaystyle \large{ \pi  +   \frac{ \pi}{3}  =  \frac{3 \pi}{3}   +   \frac{  \pi}{3} } \\  \displaystyle \large \boxed{ \frac{4 \pi}{3} }</u>

Both values are apart of the interval. Hence,

\displaystyle \large \boxed{ \theta =  \frac{2 \pi}{3} , \frac{4 \pi}{3} }

<u>S</u><u>e</u><u>c</u><u>o</u><u>n</u><u>d</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>

Isolate sin(4 theta).

\displaystyle \large{sin 4 \theta =  -  \frac{1}{ \sqrt{2} } }

Rationalize the denominator.

\displaystyle \large{sin4 \theta =  -  \frac{ \sqrt{2} }{2} }

The problem here is 4 beside theta. What we are going to do is to expand the interval.

\displaystyle \large{0 \leqslant  \theta < 2 \pi}

Multiply whole by 4.

\displaystyle \large{0 \times 4 \leqslant  \theta \times 4 < 2 \pi \times 4} \\  \displaystyle \large \boxed{0 \leqslant 4 \theta < 8 \pi}

Then find the reference angle.

We know that sin(π/4) = √2/2. Hence π/4 is our reference angle.

sin is negative in Q3 and Q4. We use π + (ref. angle) for Q3 and 2π - (ref. angle for Q4.)

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>3</u>

<u>\displaystyle \large{ \pi +  \frac{ \pi}{4}  =  \frac{ 4 \pi}{4}  +  \frac{ \pi}{4} } \\  \displaystyle \large \boxed{  \frac{5 \pi}{4} }</u>

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>4</u>

\displaystyle \large{2 \pi -  \frac{ \pi}{4}  =  \frac{8 \pi}{4}  -  \frac{ \pi}{4} } \\  \displaystyle \large \boxed{ \frac{7 \pi}{4} }

Both values are in [0,2π). However, we exceed our interval to < 8π.

We will be using these following:-

\displaystyle \large{ \theta + 2 \pi k =  \theta \:  \:  \:  \:  \:  \sf{(k  \:  \: is \:  \: integer)}}

Hence:-

<u>F</u><u>o</u><u>r</u><u> </u><u>Q</u><u>3</u>

\displaystyle \large{ \frac{5 \pi}{4}  + 2 \pi =  \frac{13 \pi}{4} } \\  \displaystyle \large{ \frac{5 \pi}{4}  + 4\pi =  \frac{21 \pi}{4} } \\  \displaystyle \large{ \frac{5 \pi}{4}  + 6\pi =  \frac{29 \pi}{4} }

We cannot use any further k-values (or k cannot be 4 or higher) because it'd be +8π and not in the interval.

<u>F</u><u>o</u><u>r</u><u> </u><u>Q</u><u>4</u>

\displaystyle \large{ \frac{ 7 \pi}{4}  + 2 \pi =  \frac{15 \pi}{4} } \\  \displaystyle \large{ \frac{ 7 \pi}{4}  + 4 \pi =  \frac{23\pi}{4} } \\  \displaystyle \large{ \frac{ 7 \pi}{4}  + 6 \pi =  \frac{31 \pi}{4} }

Therefore:-

\displaystyle \large{4 \theta =  \frac{5 \pi}{4} , \frac{7 \pi}{4} , \frac{13\pi}{4} , \frac{21\pi}{4} , \frac{29\pi}{4}, \frac{15 \pi}{4} , \frac{23\pi}{4} , \frac{31\pi}{4}  }

Then we divide all these values by 4.

\displaystyle \large \boxed{\theta =  \frac{5 \pi}{16} , \frac{7 \pi}{16} , \frac{13\pi}{16} , \frac{21\pi}{16} , \frac{29\pi}{16}, \frac{15 \pi}{16} , \frac{23\pi}{16} , \frac{31\pi}{16}  }

Let me know if you have any questions!

You might be interested in
The ratio of volume of a cone and a hemisphere of same base radius and height is?
aliya0001 [1]

Answer:

1/2

Step-by-step explanation:

Since it is given that the cone and the hemisphere have the same height, and since the height of a hemisphere would be equal to its radius, the cones height must also be equal to its base radius.

With this information we can use the respective volume formulas.

Hemisphere:  \frac{2}{3}πr^3

Cone:  \frac{1}{3}πhr^2

Since h (height) = r we can say the cone volume equals:

\frac{1}{3}πr^3

Now to find the ratio we divide the cone volume equation by the hemisphere volume equation

pi and r^3 cancels out from the division and we are left with

ratio = (1/3)/(2/3)

ratio = 1/2

7 0
3 years ago
(Edge comparing data sets quiz) what can be made between the two sets of data in the table?​
telo118 [61]

Answer: The 1st one I think.

5 0
3 years ago
What is <br> fraction 1 over 3 x3 + 5.2y when x = 3 and y = 2 <br> 13.4 16.4 19.4 28.4
djyliett [7]

Answer:

13.4

Step-by-step explanation:

1/3 * 3x + 5.2y

1/3 * 3(3)  + 5.2(2)

1/27  + 10.4

5 0
2 years ago
Read 2 more answers
84 is 75%, how much is 100%
Afina-wow [57]
La respuesta es 112, es una regla de tres simples
6 0
4 years ago
Please help me solve for x​
densk [106]

Answer:

A. x=16

Step-by-step explanation:

Similar triangles/ratios

1. Substitute 2x + 7 = 39, 4x + 1 = 65

2. Find size ratio between the two figures, 5:3

3. Check for similarity - 39 x 5/3 = 65

4 0
3 years ago
Other questions:
  • Suppose that one person in 10,000 people has a rare genetic disease. There is an excellent test for the disease; 98.8% of the pe
    12·1 answer
  • 9.5 kiloliters =____deciliters<br> Can someone help?
    6·1 answer
  • Scott Samuels had pharmaceutical sales of $42,500 last month. If his commission rate is 9%, find the amount of his commission.
    15·1 answer
  • NASA scientists obtained the following data from airborne radiometer scans using the ESTAR method of aperature synthesis Soil Mo
    8·1 answer
  • Write the quadratic equation in general quadratic form below 3x^2 + 6x = 12
    8·2 answers
  • Police response time to an emergency call is the difference between the time the call is first received by the dispatcher and th
    6·1 answer
  • Which graph represents the polynomial function g(x) = x3 + x2 – 17x + 15?
    8·1 answer
  • Answer this question to get marked as brainliest plus 15 points!!!!
    14·1 answer
  • How do I find the variable?
    5·1 answer
  • -8/7 + (-2/3)<br> HELPP Mee
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!