We know that :



Using above ideas we can solve the Problem :
⇒ 
⇒ ![ln(x - 3) - ln(x + 3)^\frac{3}{8} = ln[\frac{(x - 3)}{(x + 3)^\frac{3}{8}}]](https://tex.z-dn.net/?f=ln%28x%20-%203%29%20-%20ln%28x%20%2B%203%29%5E%5Cfrac%7B3%7D%7B8%7D%20%3D%20ln%5B%5Cfrac%7B%28x%20-%203%29%7D%7B%28x%20%2B%203%29%5E%5Cfrac%7B3%7D%7B8%7D%7D%5D)
⇒ ![4ln[\frac{(x - 3)}{(x + 3)^\frac{3}{8}}] = ln[\frac{(x - 3)}{(x + 3)^\frac{3}{8}}]^4 = ln[\frac{(x - 3)^4}{(x + 3)^\frac{3}{2}}]](https://tex.z-dn.net/?f=4ln%5B%5Cfrac%7B%28x%20-%203%29%7D%7B%28x%20%2B%203%29%5E%5Cfrac%7B3%7D%7B8%7D%7D%5D%20%3D%20ln%5B%5Cfrac%7B%28x%20-%203%29%7D%7B%28x%20%2B%203%29%5E%5Cfrac%7B3%7D%7B8%7D%7D%5D%5E4%20%3D%20ln%5B%5Cfrac%7B%28x%20-%203%29%5E4%7D%7B%28x%20%2B%203%29%5E%5Cfrac%7B3%7D%7B2%7D%7D%5D)
⇒ ![\frac{1}{3}lnx + ln[\frac{(x - 3)^4}{(x + 3)^\frac{3}{2}}] = ln(x)^\frac{1}{3} + ln[\frac{(x - 3)^4}{(x + 3)^\frac{3}{2}}] = ln[\frac{\sqrt[3]{x}(x - 3)^4}{\sqrt{(x + 3)^{3}}}]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B3%7Dlnx%20%2B%20ln%5B%5Cfrac%7B%28x%20-%203%29%5E4%7D%7B%28x%20%2B%203%29%5E%5Cfrac%7B3%7D%7B2%7D%7D%5D%20%3D%20ln%28x%29%5E%5Cfrac%7B1%7D%7B3%7D%20%2B%20ln%5B%5Cfrac%7B%28x%20-%203%29%5E4%7D%7B%28x%20%2B%203%29%5E%5Cfrac%7B3%7D%7B2%7D%7D%5D%20%3D%20ln%5B%5Cfrac%7B%5Csqrt%5B3%5D%7Bx%7D%28x%20-%203%29%5E4%7D%7B%5Csqrt%7B%28x%20%2B%203%29%5E%7B3%7D%7D%7D%5D)
Option 3 is the Answer
Answer:
Step-by-step explanation:
Given




Required

The question is illustrated with the attached image.
From the image, we have:

This gives:


--- approximated
Answer:
61
Step-by-step explanation:
(2x + 3) + (x - 6) = 180
3x - 3 = 180
3x = 183
x = 61
Answer:
2-x^2+x^3
Step-by-step explanation:
The expression 2-x^2+x^3 can't be simplified further since the terms in the expression are unlike terms.
Hope this helps ;) ❤❤❤
I guess ping means point!
Slope = 5/3
The equation is y = 5/3 x