Answer:
x = 6 m
Step-by-step explanation:
The area (A) of a trapezium is calculated as
A =
h (a + b)
where h is the perpendicular height and a, b the parallel bases
Here A = 60, h = 8, a = 9 and b = x , thus
× 8 × (9 + x) = 60, that is
4(9 + x) = 60 ( divide both sides by 4 )
9 + x = 15 ( subtract 9 from both sides )
x = 6 m
Rotation being a rigid transformation, does not alter the angle and side lengths after transformation.
The arrow in Figure B will have the same angle measure as Figure A
From the complete question (see attachment), we understand that:
Figure A is rotated 90 degrees clockwise around point (2,2)
Rotation is a rigid transformation
This means that: after the transformation
- Figure A and figure B will have the same side lengths
- Figure A and figure B will have the same measure of angles
The above highlights imply that, the arrow in Figure B will have the same angle measure as Figure A
Read more about rigid transformations at:
brainly.com/question/1761538
Answer:
<em>Answer is</em><em> </em><em>given below</em><em> </em><em>.</em>
Step-by-step explanation:
Letters in the word "<em>MATHEMATICS</em><em> </em><em>"</em>
<em>M</em><em>,</em><em>A</em><em>,</em><em>T</em><em>,</em><em>H</em><em>,</em><em>E</em><em>,</em><em>I</em><em>,</em><em>C</em><em>,</em><em>S</em><em>.</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>HAVE A NICE DAY</em><em>!</em>
<em>THANKS FOR GIVING ME THE OPPORTUNITY</em><em> </em><em>TO ANSWER YOUR QUESTION</em><em>. </em>
If you want the area of the entire trapeziod.
The formula for area of a trapeziod is:
1/2h(b₁+b₂)
So the equation applied to the trapeziod is:
2.5(20+12)
20+12 is 32. 32 multiplied by 2.5 is 80.
<h3><u><em>
Your answer is 80.</em></u></h3>