Answer:
The value of x is 0.5
The value of y is 0.8
The value of z is 0.9
Step-by-step explanation:
* Lets explain how to find the values of x , y and z
- <u><em>From the attached figure</em></u>
#
and
intersect each other at a point
- When two lines intersect each other at a point they formed
congruent vertical opposite angles
∴ The angle of measure (50z + 13)° = the angle of measure (80z - 14)°
because thy are vertical opposite angles
∴ 50z + 13 = 80z - 14
- Add 14 to both sides
∴ 50z + 27 = 80z
- Subtract 50z from both sides
∴ 27 = 30z
- Divide both sides by 30
∴ ![z=\frac{27}{30}=\frac{9}{10}=0.9](https://tex.z-dn.net/?f=z%3D%5Cfrac%7B27%7D%7B30%7D%3D%5Cfrac%7B9%7D%7B10%7D%3D0.9)
* The value of z is 0.9
- <u><em>From the attached figure</em></u>
# The angles of measures (50z + 13)° and (45x + 19/2)° have sum
of 90°
∴ 50z + 13 + 45x + 19/2 = 90
∵ z = 0.9
∴ 50(0.9) + 13 + 45x + 19/2 = 90
∴ 45 + 13 + 45x + 9.5 = 90
- Add like term in the left hand side
∴ 67.5 + 45x = 90
- Subtract 67.5 from both sides
∴ 45x = 22.5
- Divide both sides by 45
∴ x = 0.5
* The value of x is 0.5
- <u><em>From the attached figure</em></u>
# There is a ray perpendicular to line ![l_{1}](https://tex.z-dn.net/?f=l_%7B1%7D)
∴ The measure of the angle whose measure (225y/2)° is 90°
∴ ![\frac{225y}{2}=90](https://tex.z-dn.net/?f=%5Cfrac%7B225y%7D%7B2%7D%3D90)
- Multiply both sides by 2
∴ 225y = 180
- Divide both sides by 225
∴ ![y=\frac{180}{225}=\frac{4}{5}=0.8](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B180%7D%7B225%7D%3D%5Cfrac%7B4%7D%7B5%7D%3D0.8)
* The value of y is 0.8