m∠FDE = 52°
Solution:
Given data:
DE ≅ DF, CD || BE, BC || FD and m∠ABF = 116°
<em>Sum of the adjacent angles in a straight line = 180°</em>
m∠ABF + m∠CBF = 180°
116° + m∠CBF = 180°
m∠CBF = 64°
If CD || BE, then CD || BF.
Hence CD || BE and BE || FD.
Therefore BFCD is a parallelogam.
<em>In parallelogram, Adjacent angles form a linear pair.</em>
m∠CBF + m∠BFD = 180°
64° + m∠BFD = 180°
m∠BFD = 116°
<em>Sum of the adjacent angles in a straight line = 180°</em>
m∠BFD + m∠DFE = 180°
116° + m∠DFE = 180°
m∠DFE = 64°
we know that DE ≅ DF.
<em>In triangle, angles opposite to equal sides are equal.</em>
m∠DFE = m∠DEF
m∠DEF = 64°
<em>sum of all the angles of a triangle = 180°</em>
m∠DFE + m∠DEF + m∠FDE = 180°
64° + 64° + m∠FDE = 180°
m∠FDE = 52°
Answer:
none of the above
Step-by-step explanation:
The problem as written cannot have any of the solutions offered.
For any of those choices, the right side expression will be irrational. The left side expression will be rational for any rational value of x, so cannot be equal to the right-side expression.
The solution is an irrational number near ...
x ≈ 1.33682898582
Yesterday.
Exp: if you make the denominators equal, 5/6 becomes 10/12 which is more than 7/12
Answer:
They are none x- intercepts on the parabola. To find the x-intercept, substitute in 0 for y and solve for x.