27 inches/ 6 inches = 4.5 inches
The width is 4.5 inches
The mathematical word describing both
and
in the expression
is "<u><em>addition</em></u>"
<h3>How to form mathematical expression from the given description?</h3>
You can represent the unknown amounts by the use of variables. Follow whatever the description is and convert it one by one mathematically. For example if it is asked to increase some item by 4 , then you can add 4 in that item to increase it by 4. If something is for example, doubled, then you can multiply that thing by 2 and so on methods can be used to convert description to mathematical expressions.
For the given case, the terms were
and
and the expression formed from them is 
This means both the terms were added together, as denoted by '+' (called 'plus') sign.
When two terms are written with 'plus' sign in between, then that means they're added to each other and the result will be addition of both of their's values.
Thus, the mathematical word describing both
and
in the expression
is <u><em>addition</em></u>"
Learn more about addition here:
brainly.com/question/14148883
Answer:
JM is the diameter or 180°
MK = diameter - 21° = 159°
Step-by-step explanation:
Answer:
1/7
Step-by-step explanation:
x/y
Plug in the values.
(2)/(14)
Simplify.
1/7
Answer:
a)0.08 , b)0.4 , C) i)0.84 , ii)0.56
Step-by-step explanation:
Given data
P(A) = professor arrives on time
P(A) = 0.8
P(B) = Student aarive on time
P(B) = 0.6
According to the question A & B are Independent
P(A∩B) = P(A) . P(B)
Therefore
&
is also independent
= 1-0.8 = 0.2
= 1-0.6 = 0.4
part a)
Probability of both student and the professor are late
P(A'∩B') = P(A') . P(B') (only for independent cases)
= 0.2 x 0.4
= 0.08
Part b)
The probability that the student is late given that the professor is on time
=
=
= 0.4
Part c)
Assume the events are not independent
Given Data
P
= 0.4
=
= 0.4

= 0.4 x P
= 0.4 x 0.4 = 0.16
= 0.16
i)
The probability that at least one of them is on time
= 1-
= 1 - 0.16 = 0.84
ii)The probability that they are both on time
P
= 1 -
= 1 - ![[P({A}')+P({B}') - P({A}'\cap {B}')]](https://tex.z-dn.net/?f=%5BP%28%7BA%7D%27%29%2BP%28%7BB%7D%27%29%20-%20P%28%7BA%7D%27%5Ccap%20%7BB%7D%27%29%5D)
= 1 - [0.2+0.4-0.16] = 1-0.44 = 0.56