Answer:
A reasonable estimate of the probability is equal to
or 
Step-by-step explanation:
we know that
The probability of an event is the ratio of the size of the event space to the size of the sample space.
The size of the sample space is the total number of possible outcomes
The event space is the number of outcomes in the event you are interested in.
so
Let
x------> size of the event space
y-----> size of the sample space
so

In this problem we have


substitute

Convert to percentage

1. 18.6 +8.7
2. 104-54 then that number /1
<h3>Given</h3>
- a cone of height 0.4 m and diameter 0.3 m
- filling at the rate 0.004 m³/s
- fill height of 0.2 m at the time of interest
<h3>Find</h3>
- the rate of change of fill height at the time of interest
<h3>Solution</h3>
The cone is filled to half its depth at the time of interest, so the surface area of the filled portion will be (1/2)² times the surface area of the top of the cone. The filled portion has an area of
... A = (1/4)(π/4)d² = (π/16)(0.3 m)² = 0.09π/16 m²
This area multiplied by the rate of change of fill height (dh/dt) will give the rate of change of volume.
... (0.09π/16 m²)×dh/dt = dV/dt = 0.004 m³/s
Dividing by the coefficient of dh/dt, we get
... dh/dt = 0.004·16/(0.09π) m/s
... dh/dt = 32/(45π) m/s ≈ 0.22635 m/s
_____
You can also write an equation for the filled volume in terms of the filled height, then differentiate and solve for dh/dt. When you do, you find the relation between rates of change of height and area are as described above. We have taken a "shortcut" based on the knowledge gained from solving it this way. (No arithmetic operations are saved. We only avoid the process of taking the derivative.)
Note that the cone dimensions mean the radius is 3/8 of the height.
V = (1/3)πr²h = (1/3)π(3/8·h)²·h = 3π/64·h³
dV/dt = 9π/64·h²·dh/dt
.004 = 9π/64·0.2²·dh/dt . . . substitute the given values
dh/dt = .004·64/(.04·9·π) = 32/(45π)
Let's use common denominator. In this case, our common denominator would be 40.
3/5 = 24/40.
6/8 = 30/40
6/10 = 24/40.
So 3/5 and 6/10 are the same.