1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Effectus [21]
3 years ago
9

To find the quotient of 8 :- 1/3, multiply 8 by

Mathematics
2 answers:
MrMuchimi3 years ago
7 0

Answer:

3

Step-by-step explanation:


Elina [12.6K]3 years ago
4 0

Answer:

To find the quotient of 8 Divided by 1/3.

Step-by-step explanation

Ur answer would 3 but to find out if its right is...

U would do 8 divided by 1/3 multiply 8 by three your answer would be 1/3 or 3

Hope It Helps (:

You might be interested in
According to the Department of Transportation, 27% of domestic flights were delayed in the last year at JFK airport. Five flight
Mars2501 [29]

Answer:

The probability that all the five flights are delayed is 0.2073.

Step-by-step explanation:

Let <em>X</em> = number of domestic flights delayed at JFK airport.

The probability of a domestic flight being delayed at the JFK airport is, P (X) = <em>p</em> = 0.27.

A random sample of <em>n</em> = 5 flights are selected at JFK airport.

The random variable <em>X</em> follows a Binomial distribution with parameters <em>n</em> and <em>p</em>.

The probability mass function of <em>X</em> is:

P(X=x)={5\choose x}0.27^{x}(1-0.27)^{5-x};\ x=0,1,2...

Compute the probability that all the five flights are delayed as follows:

P(X=5)={5\choose 5}0.27^{5}(1-0.27)^{5-5}=1\times 1\times 0.207307=0.2073

Thus, the probability that all the five flights are delayed is 0.2073.

4 0
3 years ago
Evaluate the following trigonometric expression
Harlamova29_29 [7]

Answer:

-60

hope it helps

5 0
3 years ago
5 pounds of tomatoes cost $15.50. How much does one pound of tomatoes cost?
Tanzania [10]

Answer:

C 3.10

Step-by-step explanation:

15.50 divide by 5 is 3.10

Brainliest?

3 0
3 years ago
Read 2 more answers
(cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx)=?
Tasya [4]
Do you mean <span><span><span><span>cos6</span>x+6<span>cos4</span>x+15<span>cos2</span>x+10</span><span><span>cos5</span>x+5<span>cos3</span>x+10cosx</span></span>  ?</span> or <span><span><span>cos6x+6cos4x+15cos2x+10</span><span>cos5x+5cos3x+10cosx</span></span>  ?</span> or <span><span><span><span>cos6</span>x+6<span>cos4</span>x+15<span>cos2</span>x+10</span><span><span>cos5</span>x</span></span>+5<span>cos3</span>x+10cosx  ?</span> or <span><span><span>cos6x+6cos4x+15cos2x+10</span><span>cos5x</span></span>+5cos3x+10cosx  <span>?</span></span>
7 0
3 years ago
The third-degree Taylor polynomial about x = 0 of In(1 - x) is
gizmo_the_mogwai [7]

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

5 0
3 years ago
Other questions:
  • Question 4:<br><br> Rewrite the following without an exponent.<br><br> (5/8)^−1
    9·1 answer
  • HELP! XD
    9·1 answer
  • a car brought for sh 80,000 was sold through a dealer at a profit of 15% commission on the selling price.how much did the owner
    6·1 answer
  • deahawn has a box of crackers shaped in a rectangular prism. The volume of crackers is 432 inches the area of the base 32 inches
    5·1 answer
  • How do you write 0.27% as a decimal?
    5·2 answers
  • A man is building a gazebo and plans to use for the floor two boards that are 8 and three fourths feet ​, four boards that are 1
    7·1 answer
  • Solve for x.<br>this is for the k12 test.​
    6·2 answers
  • 40 points if helped, question is in the picture
    13·1 answer
  • HI GUYS PLEASE HELP WITH THIS LAST ONE... <br> TYSM
    8·1 answer
  • Find the total surface area of this cuboid
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!