1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nadya [2.5K]
4 years ago
9

What times 2 =121 example 2x2=4

Mathematics
2 answers:
bearhunter [10]4 years ago
6 0

Answer:

Do you mean 11*11=121

Step-by-step explanation:

11 multiplied by 11

Sergeeva-Olga [200]4 years ago
4 0

Answer:

60.5

Step-by-step explanation:

All you need to do is divide 121 and 2. When you do so you world get 60.5.

To check, 60.5 times 2 is 121.

Hope this helped!

You might be interested in
Find the inverse of y=-3x+6
mihalych1998 [28]

Answer:

y = (x – 6) / -3 = [2 – x/3]

Step-by-step explanation:

y = f(x) = -3x + 6

f⁻¹(x) → x = -3y + 6 → (x – 6) / -3 → x / -3 + -6/-3 → -x / 3 + 2 → 2 – x/3

5 0
3 years ago
\lim _{x\to 0}\left(\frac{2x\ln \left(1+3x\right)+\sin \left(x\right)\tan \left(3x\right)-2x^3}{1-\cos \left(3x\right)}\right)
Vinvika [58]

\displaystyle \lim_{x\to 0}\left(\frac{2x\ln \left(1+3x\right)+\sin \left(x\right)\tan \left(3x\right)-2x^3}{1-\cos \left(3x\right)}\right)

Both the numerator and denominator approach 0, so this is a candidate for applying L'Hopital's rule. Doing so gives

\displaystyle \lim_{x\to 0}\left(2\ln(1+3x)+\dfrac{6x}{1+3x}+\cos(x)\tan(3x)+3\sin(x)\sec^2(x)-6x^2}{3\sin(3x)}\right)

This again gives an indeterminate form 0/0, but no need to use L'Hopital's rule again just yet. Split up the limit as

\displaystyle \lim_{x\to0}\frac{2\ln(1+3x)}{3\sin(3x)} + \lim_{x\to0}\frac{6x}{3(1+3x)\sin(3x)} \\\\ + \lim_{x\to0}\frac{\cos(x)\tan(3x)}{3\sin(3x)} + \lim_{x\to0}\frac{3\sin(x)\sec^2(x)}{3\sin(3x)} \\\\ - \lim_{x\to0}\frac{6x^2}{3\sin(3x)}

Now recall two well-known limits:

\displaystyle \lim_{x\to0}\frac{\sin(ax)}{ax}=1\text{ if }a\neq0 \\\\ \lim_{x\to0}\frac{\ln(1+ax)}{ax}=1\text{ if }a\neq0

Compute each remaining limit:

\displaystyle \lim_{x\to0}\frac{2\ln(1+3x)}{3\sin(3x)} = \frac23 \times \lim_{x\to0}\frac{\ln(1+3x)}{3x} \times \lim_{x\to0}\frac{3x}{\sin(3x)} = \frac23

\displaystyle \lim_{x\to0}\frac{6x}{3(1+3x)\sin(3x)} = \frac23 \times \lim_{x\to0}\frac{3x}{\sin(3x)} \times \lim_{x\to0}\frac{1}{1+3x} = \frac23

\displaystyle \lim_{x\to0}\frac{\cos(x)\tan(3x)}{3\sin(3x)} = \frac13 \times \lim_{x\to0}\frac{\cos(x)}{\cos(3x)} = \frac13

\displaystyle \lim_{x\to0}\frac{3\sin(x)\sec^2(x)}{3\sin(3x)} = \frac13 \times \lim_{x\to0}\frac{\sin(x)}x \times \lim_{x\to0}\frac{3x}{\sin(3x)} \times \lim_{x\to0}\sec^2(x) = \frac13

\displaystyle \lim_{x\to0}\frac{6x^2}{3\sin(3x)} = \frac23 \times \lim_{x\to0}x \times \lim_{x\to0}\frac{3x}{\sin(3x)} \times \lim_{x\to0}x = 0

So, the original limit has a value of

2/3 + 2/3 + 1/3 + 1/3 - 0 = 2

6 0
3 years ago
IDK how to deal with big boy numbers! SOS
qaws [65]

Answer:

SOSOSOSOSOSOSOSOSOSOS

Step-by-step explanation:

WE HAVE A 911 HERE THERE SEEMS TO BE NUMBERS AT HOSTAGE WEE WOO WEE WOO

4 0
3 years ago
Read 2 more answers
A cuboid has a square base of side x cm. The volume of the cuboid is V cm^3 and the height is h cm.
Lemur [1.5K]
You will need the formula for finding the volume of a rectangular prism (cuboid).
V = l x w x h

1. V = x^2 x h

2. To solve for x, you will substitute in the information you know.

150 = x^2 x 24
Divide both sides by 24 to get

6.25= x^2
The square root of 6.25 is 2.5.

x = 2.5 cm
7 0
3 years ago
X^2+_x+_=0<br> Please help need to pass this class
snow_tiger [21]
Answer:
x^2+0x+(-x^2)=0

Explanation:
x^2+0x+(-x^2)=0
Anything multiplied by 0 is equal to 0
x^2+0+(-x^2)=0
x^2+(-x^2)=0
A positive and a negative makes a negative
x^2-x^2=0
0=0

For these types of problems, play around with multiplying by 0 and adding negatives.

I hope this helps! Please comment if you have any questions.
7 0
3 years ago
Other questions:
  • What is the best estimate for the sum of 3/8 and 1/12
    6·1 answer
  • Classify the following expression by degree and term:
    12·2 answers
  • .
    5·1 answer
  • (5 Points per question)
    7·1 answer
  • Draw a quick picture to show the number write how many tens and ones there are Edna has 82 stamps
    8·1 answer
  • A dollar bill is worth _____ pennies. When written in decimal format, each penny can be written as ______ of a dollar.
    11·2 answers
  • Help a homie out please
    5·1 answer
  • What type of graph is shown
    14·1 answer
  • FIRST CORRECT WILL BE MARKED BRAINLIEST!!!
    10·1 answer
  • 2. Find the equation of the line in slope-intercept form that contains the points (-11, 2) and (1,4).
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!