Factor 3 out of 12:
3x^3y + 3 • 4xy - 9x^2y - 36y
Factor out 3 out of -9:
3x^3y + 3(4xy) + 3 • -3x^2y - 36y
Factor 3 out of -36:
3(x^3y) + 3(4x7) + 3(-3x^2y) + 3(-12)y
Factor 3 out of 3 (x^3y) + 3(-12y):
3(x^2y + 4xy) + 3(-3x^2y) + 3(-12y)
Factor 3 out of 3 (x^3y + 4xy) + 3(-3x^2y):
3(x^2y + 4xy - 3x^2y) + 3(-12y)
Factor 3 out of
3 (x^3y + 4xy - 3x^2y) + 3 (-12y):
3 (x^3y + 4xy - 3x^2y - 12y)
We have
f(x) = a(x – h)²<span> + k
we know the vertex v(5,3)
</span><span>substitute in the values for h and k
</span>f(x) = a(x – 5)²<span> + 3
</span><span>Use another point and substitute in values for x and f(x).
for the point (6,5)
</span><span>Solve for a.
5 = a(6 – 5)2 + 3-------------- > 5=a+3-------------> a=2
</span>
The function is f(x)=a(x – h)2 + k-------- > 2(x – 5)² + 3
f(x)= 2(x – 5)² + 3-------- > 2[x²-10x+25]+3=2x²-20x+50+3=2x²-20x+53
f(x)=2x²-20x+53
<span>
the answer is f(x)=</span> 2(x – 5)² + 3----------------- > (f(x)=2x²-20x+53)<span>
</span>
Answer:
m<GEF = 66°
Step-by-step explanation:
(72+60)/2
= 132/2
= 66
Answered by GAUTHMATH