Answer: $10.40
Explanation:
First, find the cost of 1 box of pasta. 13/5 = 2.6, so $2.60 a box.
Next, find how many boxes there are. 48/12 = 4, so 4 boxes of pasta.
Finally, multiply 4*2.6 to get the final cost.
Answer:
The coefficient is equal to 
Step-by-step explanation:
we have

we know that
The coefficient is equal to

so

Step-by-step explanation:

Given expression is

To, evaluate this limit, let we simplify numerator and denominator individually.
So, Consider Numerator

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.
So, using Sum of n terms of GP, we get


Now, Consider Denominator, we have

can be rewritten as

![\rm \: = \: {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%20%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B%7B%5Cdfrac%7Bn%20-%201%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7Bn%20-%202%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D)
![\rm \: = \: {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%20%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D)
Now, Consider

So, on substituting the values evaluated above, we get
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{\dfrac{ {n}^{n} - 1}{1 - \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%5Cdfrac%7B%20%7Bn%7D%5E%7Bn%7D%20%20-%201%7D%7B1%20-%20%20%5Cdfrac%7B1%7D%7Bn%7D%20%7D%7D%7B%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{ {n}^{n} - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%20%7Bn%7D%5E%7Bn%7D%20%20-%201%7D%7B%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%20%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20-%20%5Cdfrac%7B1%7D%7B%20%7Bn%7D%5E%7Bn%7D%20%7D%20%5Cbigg%5D%7D%7B%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%5Cbigg%5B1%20-%20%5Cdfrac%7B1%7D%7B%20%7Bn%7D%5E%7Bn%7D%20%7D%20%5Cbigg%5D%7D%7B%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B1%7D%7B%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
Now, we know that,
![\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x} = {e}^{k}}}}](https://tex.z-dn.net/?f=%5Cred%7B%5Crm%20%3A%5Clongmapsto%5C%3A%5Cboxed%7B%5Ctt%7B%20%5Cdisplaystyle%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%5Cbigg%5B1%20%2B%20%5Cdfrac%7Bk%7D%7Bx%7D%20%5Cbigg%5D%5E%7Bx%7D%20%20%3D%20%20%7Be%7D%5E%7Bk%7D%7D%7D%7D%20)
So, using this, we get

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have





Hence,

The answer to your question is C
Correct Answer:
Option C. Camera 2The greatest angle is always opposite to the side measure greater in length. So first we find the greatest side.
The distance between cameras is:
Camera 1 and Camera 2 : 106 feet
Camera 2 and Camera 3 : 133 feet
Camera 1 and Camera 3 : 151 feet
So the largest side of the triangle is the side between camera 1 and camera 3. So the camera opposite to this side will have to cover to greatest angle. The camera opposite to this side is Camera 2. This scenario is also shown in figure below.
Therefore, Camera 2 had to cover the greatest angle.