Answer:
Step-by-step explanation:
Given that a machine produces defective parts with three different probabilities depending on its state of repair.
condition Good order Wearing down Needs main Total
Prob 0.8 0.1 0.1 1
Defective 0.02 0.1 0.3
Joint prob 0.016 0.01 0.03 0.056
a) 0.016
b) total = 0.056
c) If not defective from needs maintenance
Prob for not defective = 
From machine that needs maintenance = 0.07
So reqd prob = 
Answer:
![\left[\begin{array}{c}-\frac{8}{\sqrt{117} } \\\frac{7}{\sqrt{117} }\\\frac{2}{\sqrt{117} }\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-%5Cfrac%7B8%7D%7B%5Csqrt%7B117%7D%20%7D%20%5C%5C%5Cfrac%7B7%7D%7B%5Csqrt%7B117%7D%20%7D%5C%5C%5Cfrac%7B2%7D%7B%5Csqrt%7B117%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
We are required to find a unit vector in the direction of:
![\left[\begin{array}{c}-8\\7\\2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-8%5C%5C7%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
Unit Vector, 
The Modulus of
=
Therefore, the unit vector of the matrix is given as:
![\left[\begin{array}{c}-\frac{8}{\sqrt{117} } \\\frac{7}{\sqrt{117} }\\\frac{2}{\sqrt{117} }\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-%5Cfrac%7B8%7D%7B%5Csqrt%7B117%7D%20%7D%20%5C%5C%5Cfrac%7B7%7D%7B%5Csqrt%7B117%7D%20%7D%5C%5C%5Cfrac%7B2%7D%7B%5Csqrt%7B117%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
Answer:
d is the correct answer
Step-by-step explanation: