Answer:
<em><u>The </u></em><em><u>measure</u></em><em><u> </u></em><em><u>of </u></em><em><u>uT </u></em><em><u>is </u></em><em><u>given </u></em><em><u>=</u></em><em><u> </u></em><em><u>3</u></em><em><u>1</u></em><em><u>.</u></em><em><u>6</u></em>
<em><u>and </u></em><em><u>it </u></em><em><u>is </u></em><em><u>given </u></em><em><u>,</u></em><em><u>that </u></em><em><u>WV </u></em><em><u>bisect</u></em><em><u> </u></em><em><u>the </u></em><em><u>line </u></em><em><u>UT</u></em>
<em><u>so,</u></em><em><u>the </u></em><em><u>measurement </u></em><em><u>of </u></em><em><u>US </u></em><em><u>=</u></em><em><u> </u></em><em><u>3</u></em><em><u>1</u></em><em><u>.</u></em><em><u>6</u></em><em><u>/</u></em><em><u>2</u></em>
<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>1</u></em><em><u>5</u></em><em><u>.</u></em><em><u>8</u></em><em><u> </u></em>
<em><u>hope</u></em><em><u> it</u></em><em><u> helps</u></em><em><u> and</u></em><em><u> your</u></em><em><u> day</u></em><em><u> will</u></em><em><u> be</u></em><em><u> full</u></em><em><u> of</u></em><em><u> happiness</u></em>
Answer:
f(x) = 4x − 12
Step-by-step explanation:
It's not quadratic. It's linear. Each time x increases by 1, f(x) increases by 4. So the slope is 4. The y-intercept (when x=0) is -12. The equation of the line is therefore:
f(x) = 4x − 12
Answer:
Our answer is 0.8172
Step-by-step explanation:
P(doubles on a single roll of pair of dice) =(6/36) =1/6
therefore P(in 3 rolls of pair of dice at least one doubles)=1-P(none of roll shows a double)
=1-(1-1/6)3 =91/216
for 12 players this follows binomial distribution with parameter n=12 and p=91/216
probability that at least 4 of the players will get “doubles” at least once =P(X>=4)
=1-(P(X<=3)
=1-((₁₂ C0)×(91/216)⁰(125/216)¹²+(₁₂ C1)×(91/216)¹(125/216)¹¹+(₁₂ C2)×(91/216)²(125/216)¹⁰+(₁₂ C3)×(91/216)³(125/216)⁹)
=1-0.1828
=0.8172
Answer:
0.5
Step-by-step explanation:
500/1000 = 0.5
0.5 * 1000 = 500
(x, y) --> (x + 5, y - 1)
A(3, -1) --> A'(3 + 5, -1 - 1) --> A'(8, -2)
B(6, 1) --> B'(6 + 5, 1 -1) --> B'(11, 0)
C(2, 4) --> C'(2 + 5, 4 - 1) --> C'(7, 3)
D(-1, 3) --> D'(-1 + 5, 3 - 1) --> D'(4, 2)