Answer:
a) 
b) The should sample at least 293 small claims.
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so
, which means that the answer of question a is z = 1.645.
Now, find the margin of error M as such

In which
is the standard deviation of the population and n is the size of the sample.
(b) If the group wants their estimate to have a maximum error of $12, how many small claims should they sample?
They should sample at least n small claims, in which n is found when
. So







The should sample at least 293 small claims.
35 which is slope which in turn represents the speed.
Volume
of a rectangular box = length x width x height<span>
From the problem statement,
length = 60 - 2x
width = 10 - 2x
height = x</span>
<span>
where x is the height of the box or the side of the equal squares from each
corner and turning up the sides
V = (60-2x) (10-2x) (x)
V = (60 - 2x) (10x - 2x^2)
V = 600x - 120x^2 -20x^2 + 4x^3
V = 4x^3 - 100x^2 + 600x
To maximize the volume, we differentiate the expression of the volume and
equate it to zero.
V = </span>4x^3 - 100x^2 + 600x<span>
dV/dx = 12x^2 - 200x + 600
12x^2 - 200x + 600 = 0</span>
<span>x^2 - 50/3x + 50 = 0
Solving for x,
x1 = 12.74 ; Volume = -315.56 (cannot be negative)
x2 = 3.92 ;
Volume = 1056.31So, the answer would be that the maximum volume would be 1056.31 cm^3.</span><span>
</span>
Answer:
In two years, it will get <em>$57.24</em> interest.
Step-by-step explanation: