1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lara31 [8.8K]
3 years ago
12

What is the product in lowest terms?

Mathematics
2 answers:
grin007 [14]3 years ago
6 0
#1. D. \frac{9}{14}* \frac{-7}{12} = \frac{-63}{168}= \frac{-3}{8}

#2. A. <u />\frac{1}{3} of  \frac{3}{4}=0.25= \frac{1}{4}
brilliants [131]3 years ago
3 0
C 
because you would take 3/4 and multiply it by 3/3 to get the denominator to 12
and you would multiply 1/3 by 4/4 again to get the denominator to 12.
You are getting the denominator to 12 because 12 is 3 and 4s Most Common multiple!
Now that you have multiplied them you should have 9/12 and 4/12 
Then you subtract 4 from 9 to get 5.
So the answer is 5/12!

You might be interested in
Find three fractions whose product is -5/24.
mariarad [96]

Answer:

Below.

Step-by-step explanation:

-5/8 * 1/3 = -5/24

-5/12 * 1/2 = -5/24

-5/6  * 1/4 = -5/24.

4 0
3 years ago
Will you find the volume for 30 points?
morpeh [17]

Answer:

56

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Find the square: (5x - 4y)2 <br><br> (and please put the process of solving the equation)
satela [25.4K]
(5x-4y)^2
(5x-4y)(5x-4y)

Multiply each term in one bracket in turn by the terms in the other bracket

(5x)(5x) = 25x^2
(5x)(-4y)=-20xy
(-4y)(5x)=-20xy
(-4y)(-4y)=16y^2

Put them together we have
25x^2-20xy-20xy-16y^2
25x^2-40xy-16y^2
7 0
3 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
2 years ago
Select the outlier in the data set.
Katarina [22]

Answer:

86

Step-by-step explanation:

21   <u>3</u>6

<em>5</em>2   <em>4</em>0

<u>3</u>2   <em><u>86</u></em>

<u>3</u>3   <u>3</u>8

28   <u>3</u>4

<u>3</u>0   <em>1</em>9

6 0
2 years ago
Other questions:
  • Need help ASAP! Tysm!!
    10·1 answer
  • 245% of 24.2 is what
    10·1 answer
  • Which data set represents the histogram?
    9·2 answers
  • The reading on a voltage meter connected to a test circuit is uniformly distributed over the interval (θ, θ + 1), where θ is the
    13·1 answer
  • While driving your rental car on your trip to Europe, you find that you are getting 12.4 kilometers per liter of gasoline. What
    15·1 answer
  • What is the difference<br> Coe<br> between coefficients<br> and constants?
    7·1 answer
  • 7x-3y=4 2x-y=1 the solution to the system of equations is
    8·2 answers
  • Five times two fifths
    15·1 answer
  • Image should be below
    8·1 answer
  • Need help with this first one to answer gets branliest
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!