Answer:
range of f(x) = [-4, -2) ∪ [2, 8)
a+b+c+d = -4
Step-by-step explanation:
The graph is attached. The range is the vertical extent of the function. It is defined at f(0) = -4 and f(2) = 2.
The limits f(2-) and f(4-) are -2 and 8, respectively, so the graph has open circles there. These are the ends of the two half-open intervals that make up the range of the function.
The portion of the graph in the domain [4, 7) is included in the range [2, 8), so no special treatment is needed for that piece of the function.
Let s represent the length of any one side of the original square. The longer side of the resulting rectangle is s + 9 and the shorter side s - 2.
The area of this rectangle is (s+9)(s-2) = 60 in^2.
This is a quadratic equation and can be solved using various methods. Let's rewrite this equation in standard form: s^2 + 7s - 18 = 60, or:
s^2 + 7s - 78 = 0. This factors as follows: (s+13)(s-6)=0, so that s = -13 and s= 6. Discard s = -13, since the side length cannot be negative. Then s = 6, and the area of the original square was 36 in^2.
Consecutive= One after another
17 + 18 = 35
Your two consecutive numbers are 17 and 18