Answer:
Step 1: Transpose everything to one side
12. x²+16x+15-10x+4=0
Step 2: Add the like terms
x² + (16x - 10x) + 15 + 4=0
x² + 6x + 19=0
Step 3: Use the quadratic formula to get the value(s) of x.
a=1 b=6 c=19

therefore, x=... or x
Answer: cos(x)
Step-by-step explanation:
We have
sin ( x + y ) = sin(x)*cos(y) + cos(x)*sin(y) (1) and
cos ( x + y ) = cos(x)*cos(y) - sin(x)*sin(y) (2)
From eq. (1)
if x = y
sin ( x + x ) = sin(x)*cos(x) + cos(x)*sin(x) ⇒ sin(2x) = 2sin(x)cos(x)
From eq. 2
If x = y
cos ( x + x ) = cos(x)*cos(x) - sin(x)*sin(x) ⇒ cos²(x) - sin²(x)
cos (2x) = cos²(x) - sin²(x)
Hence:The expression:
cos(2x) cos(x) + sin(2x) sin(x) (3)
Subtition of sin(2x) and cos(2x) in eq. 3
[cos²(x)-sin²(x)]*cos(x) + [(2sen(x)cos(x)]*sin(x)
and operating
cos³(x) - sin²(x)cos(x) + 2sin²(x)cos(x) = cos³(x) + sin²(x)cos(x)
cos (x) [ cos²(x) + sin²(x) ] = cos(x)
since cos²(x) + sin²(x) = 1
Answer:
option B is the correct answer
Step-by-step explanation:
mark me brainliest
39 stickers in each album
Answer:
I believe the answer is x=1.
Step-by-step explanation:
I am a bit confused on what is wanted, but g(x) is the x value on the line g. so when g(x)=1, I think x=1 on the line g.