Answer:
A) mass divided by volume
Explanation:
Answer:
16.02 g
Explanation:
the balanced equation for the decomposition of CuCO₃ is as follows
CuCO₃ --> CuO + CO₂
molar ratio of CuCO₃ to CO₂ is 1:1
number of CuCO₃ moles decomposed - 45 g / 123.5 g/mol = 0.364 mol
according to the molar ratio
1 mol of CuCO₃ decomposes to form 1 mol of CO₂
therefore 0.364 mol of CuCO₃ decomposes to form 0.364 mol of CO₂
number of CO₂ moles produced - 0.364 mol
therefore mass of CO₂ produced - 0.364 mol x 44 g/mol = 16.02 g
16.02 g of CO₂ produced
Answer:
Explanation:
T1 = 150°C = (150 + 273.15)K = 423.15K
T2 = 45°C = (45 + 273.15)K = 318K
V1 = 693mL = 693cm³
Applying Charle's law, the volume of a given gas is directly proportional to is temperature provided that pressure remains constant.
V = kT
V1 / T1 = V2 / T2
693 / 423.15 = V2 / 318
V2 = (693 * 318) / 423.15 = 520.79cm³
The new volume of the gas is 520.79cm³
If the cube is 3 cm on each side, then it has a volume of 27 cm^3 (3 x 3 x 3). Density is mass divided by volume, so its density is 72.9/27 = 2.7 g/cm^3.
<span>Going by the density, the cube is made of Aluminium - density is a fairly unique quantity</span>
Answer:
Covalent solids, also called network solids, are solids that are held together by covalent bonds. As such, they need localized electrons (shared between the atoms) and therefore the atoms are arranged in fixed geometries. Distortion far from this geometry can only occur through a breaking of covalent sigma bonds.