Answer:
x = -1 y = 2
Step-by-step explanation:
Notice that the coefficients of x are opposites of each other. That makes the problem so much easier to solve. All you have to do is add the two equations and the x terms will be eliminated.
2x - 4y = -10
<u>-2x - y = 0</u>
- 5y = -10
y = 2 Substitute y = 2 into the first equation. 2x - 4(2) = -10
2x - 8 = -10
2x = -2
x = -1
It is always a good idea to check your results into the equations to see if they satisfy the equations.
<u> </u>
We will see that the solution in the given interval is: x = 0.349 radians.
<h3>How to solve equations with the variable in the argument of a cosine?</h3>
We want to solve:
cos(3*x) = 1/2
Here we must use the inverse cosine function, Acos(x). Remember that:
cos(Acos(x)) = Acos(cos(x)) = x.
If we apply that in both sides, we get:
Acos( cos(3x) ) = Acos(1/2)
3*x = Acos(1/2)
x = Acos(1/2)/3 = 0.349
So x is equal to 0.349 radians, which belongs to the given interval.
If you want to learn more about trigonometry, you can read:
brainly.com/question/8120556
Answer:
45-n
Step-by-step explanation:
i think this is what you mean
The formula is
A=p (1+r/k)^kt
A future value 3000
P present value 150
R interest rate 0.025
T time?
3000=150 (1+0.025/12)^12t
Solve for t
3000/150=(1+0.025/12)^12t
Take the log
Log (3000/150)=log (1+0.025/12)×12t
12t=Log (3000/150)÷log (1+0.025/12)
T=(log(3,000÷150)÷log(1+0.025÷12))÷12
T=119.95 years
Pregunta completa:
Al llegar al hotel nos an dado un mapa con los lugares de la ciudad nos dijieron que 5 cm del mapa que representaban 600 metros de la realidad hoy queremos ir a un par que que se encuentra a 8 cm del hotel en el mapa. ¿A qué distancia del hotel está la pareja?
Respuesta: 960m
Explicación paso a paso:
Dado que:
5 cm en el mapa equivale a 600 m en tierra Por lo tanto,
8 cm en el mapa será equivalente a:
5 cm en el mapa - - - - - -> 600 m en el suelo 8cm - - - - - - -> y metros en el suelo
Usando la multiplicación cruzada
y × 5 = 8 × 600
5y = 4800 Luego,
y = 4800/5
y = 960m
Por lo tanto, 8 cm en el mapa serán 960 m en realidad.