The answer would be D, because you do 4200÷56=75 minutes. 75 minutes= 1 hour and 15 minutes
Answer:
given A=103° , B=24°
In triangle ABC,
A+B+C=180° [angle sum property of triangle]
103°+24°+C=180°
127°+C=180°
C=180°-127°
C=53°
hope it help u dear...
Answer:
![\displaystyle \int {\frac{x}{\sqrt{4 - x^2}}} \, dx = \boxed{ -\sqrt{4 - x^2} + C }](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Cfrac%7Bx%7D%7B%5Csqrt%7B4%20-%20x%5E2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cboxed%7B%20-%5Csqrt%7B4%20-%20x%5E2%7D%20%2B%20C%20%7D)
General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (cu)' = cu'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%28cu%29%27%20%3D%20cu%27)
Derivative Property [Addition/Subtraction]:
![\displaystyle (u + v)' = u' + v'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%28u%20%2B%20v%29%27%20%3D%20u%27%20%2B%20v%27)
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
Integration Rule [Reverse Power Rule]:
![\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7Bx%5En%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Bx%5E%7Bn%20%2B%201%7D%7D%7Bn%20%2B%201%7D%20%2B%20C)
Integration Property [Multiplied Constant]:
![\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7Bcf%28x%29%7D%20%5C%2C%20dx%20%3D%20c%20%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx)
Integration Methods: U-Substitution and U-Solve
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify given.</em>
<em />![\displaystyle \int {\frac{x}{\sqrt{4 - x^2}}} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Cfrac%7Bx%7D%7B%5Csqrt%7B4%20-%20x%5E2%7D%7D%7D%20%5C%2C%20dx)
<u>Step 2: Integrate Pt. 1</u>
<em>Identify variables for u-substitution/u-solve</em>.
- Set <em>u</em>:
![\displaystyle u = 4 - x^2](https://tex.z-dn.net/?f=%5Cdisplaystyle%20u%20%3D%204%20-%20x%5E2)
- [<em>u</em>] Differentiate [Derivative Rules and Properties]:
![\displaystyle du = -2x \ dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20du%20%3D%20-2x%20%5C%20dx)
- [<em>du</em>] Rewrite [U-Solve]:
![\displaystyle dx = \frac{-1}{2x} \ du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20dx%20%3D%20%5Cfrac%7B-1%7D%7B2x%7D%20%5C%20du)
<u>Step 3: Integrate Pt. 2</u>
- [Integral] Apply U-Solve:
![\displaystyle \int {\frac{x}{\sqrt{4 - x^2}}} \, dx = \int {\frac{-x}{2x\sqrt{u}}} \, du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Cfrac%7Bx%7D%7B%5Csqrt%7B4%20-%20x%5E2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cint%20%7B%5Cfrac%7B-x%7D%7B2x%5Csqrt%7Bu%7D%7D%7D%20%5C%2C%20du)
- [Integrand] Simplify:
![\displaystyle \int {\frac{x}{\sqrt{4 - x^2}}} \, dx = \int {\frac{-1}{2\sqrt{u}}} \, du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Cfrac%7Bx%7D%7B%5Csqrt%7B4%20-%20x%5E2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cint%20%7B%5Cfrac%7B-1%7D%7B2%5Csqrt%7Bu%7D%7D%7D%20%5C%2C%20du)
- [Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int {\frac{x}{\sqrt{4 - x^2}}} \, dx = \frac{-1}{2} \int {\frac{1}{\sqrt{u}}} \, du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Cfrac%7Bx%7D%7B%5Csqrt%7B4%20-%20x%5E2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7B-1%7D%7B2%7D%20%5Cint%20%7B%5Cfrac%7B1%7D%7B%5Csqrt%7Bu%7D%7D%7D%20%5C%2C%20du)
- [Integral] Apply Integration Rule [Reverse Power Rule]:
![\displaystyle \int {\frac{x}{\sqrt{4 - x^2}}} \, dx = -\sqrt{u} + C](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Cfrac%7Bx%7D%7B%5Csqrt%7B4%20-%20x%5E2%7D%7D%7D%20%5C%2C%20dx%20%3D%20-%5Csqrt%7Bu%7D%20%2B%20C)
- [<em>u</em>] Back-substitute:
![\displaystyle \int {\frac{x}{\sqrt{4 - x^2}}} \, dx = \boxed{ -\sqrt{4 - x^2} + C }](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Cfrac%7Bx%7D%7B%5Csqrt%7B4%20-%20x%5E2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cboxed%7B%20-%5Csqrt%7B4%20-%20x%5E2%7D%20%2B%20C%20%7D)
∴ we have used u-solve (u-substitution) to <em>find</em> the indefinite integral.
---
Learn more about integration: brainly.com/question/27746495
Learn more about Calculus: brainly.com/question/27746485
---
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration