37.8 g CH2Br2 X (1 mol CH2Br2 / 173.83 g) = 4.60X10^-3 mol CH2Br2
<span>4.60X10^-3 mol CH2Br2 X (2 mol Br / 1 mol CH2Br2) X 6.02X10^23 atoms/mol = 5.54X10^21 bromine atoms</span>
Answer:
FeCl₃
Explanation:
4FeCl₃ + 3O₂ => 2Fe₂O₃+ 6Cl₂
Given => 7moles 9moles
A simple way to determine which reagent is the limiting reactant is to convert all given data to moles then divide by the respective coefficients of the balanced equation. The smaller value will be the limiting reactant.
4FeCl₃ + 3O₂ => 2Fe₂O₃+ 6Cl₂
Given => 7/4 = 1.75* 9/3 = 3
*Smaller value => FeCl₃ is limiting reactant.
NOTE: However, when working problems, one must use original mole values given.
Electron affinity is the energy released when an electron is accepted by a neutral atom forming a negative ion. Chlorine has the higher electron affinity because it readily accepts an electron to become more stable. On the other hand, sodium have to give up an electron to complete its valence shell.
Answer:
Molecular mass
Explanation:
Molecular formulas is the actual number of atoms of each element in the compound while empirical formulas is the simplest or reduced ratio of the elements in the compound.
Thus,
Molecular mass = n × Empirical mass
Where, n is any positive number from 1, 2, 3...
Thus if the molecular mass is known, then we can find the value of n which results to molecular formula.