Answer and Explanation:
The answer is solution. However, single-phase alloys are solid metal solutions, and colloidal suspensions are homogenous mixtures that are not solutions. Homogenized milk, for example, is a colloidal suspension that technically meets the definition of a homogenous mixture because the milk fats, though immiscible with the whey (the aqueous phase), are tiny beads evenly distributed through the whey, and do not separate according to density, as they do in non-homogenized milk.
Hope this helps. :)
Answer:
44 g oxygen are needed.
Explanation:
Given data:
Mass of oxygen needed = ?
Mass of ammonia = 18.2 g
Solution:
Chemical equation:
4NH₃ + 5O₂ → 4NO + 6H₂O
Now we will calculate the number of moles of ammonia:
Number of moles = mass/molar mass
Number of moles = 18.2 g/ 17 g/mol
Number of moles = 1.1 mol
Now we will compare the moles of ammonia with oxygen from balance chemical equation.
NH₃ : O₂
4 : 5
1.1 : 5/4×1.1 = 1.375 mol
Mass of oxygen needed:
Mass = number of moles × molar mass
Mass = 1.375 mol × 32 g/mol
Mass = 44 g
Metal conductivity generally goes down or resistivity goes up with temperature goes up.
the compound is B.
Water is a compound because it is made up of water molecules.
Answer:
P(total) = 1329 torr
Explanation:
Given data:
Pressure of nitrogen = 984 torr
Pressure of carbon dioxide = 345 torr
Total pressure of system = ?
Solution:
The given problem will be solve through the Dalton law of partial pressure of gases.
According to the this law,
The total pressure exerted by the mixture of gases is equal to the sum of partial pressure of individual gas.
Mathematical expression,
P(total) = P₁ + P₂ +.......+ Pₙ
Here we will put the values in formula,
P₁ = partial pressure of nitrogen
P₂ = partial pressure of carbon dioxide
P(total) = 984 torr + 345 torr
P(total) = 1329 torr