Hope this table might help!
Answer:
endo takes energy in and exo releases it out
Explanation:
Answer:
The empirical formula is the simplest form;
Given:
Oxygen O at 94.1% and
H at 5.9%
Assume 100grams.
94% = 0.941 x 100gm. = 94.1 gm x 1mole/16gm. = 5.88 moles of O
5.9% = 0.059 x 100gm. = 5.9gm. X 1moleH/1.002gm. = 5.88 moles of H
There is one mole of O for each mole of H so the empirical formula is 
and written as OH.
<span>The relative strength of intermolecular forces such as ionic, hydrogen bonding, dipole-dipole interaction and Vander Waals dispersion force affects the boiling point of a compound. For this case, the longer the chain the higher the boiling point.
</span>CH, CH4, C4H10, C8H18, C16H34
Hope this answers the question. Have a nice day.
The freezing point of a solution containing 5. 0 grams of KCl and 550.0 grams of water is - 0.45°C
Using the equation,
Δ
= i
m
where:
Δ
= change in freezing point (unknown)
i = Van't Hoff factor
= freezing point depression constant
m = molal concentration of the solution
Molality is expressed as the number of moles of the solute per kilogram of the solvent.
Molal concentration is as follows;
MM KCl = 74.55 g/mol
molal concentration =
molal concentration = 0.1219m
Now, putting in the values to the equtaion Δ
= i
m we get,
Δ
= 2 × 1.86 × 0.1219
Δ
= 0.4536°C
So, Δ
of solution is,
Δ
= 0.00°C - 0.45°C
Δ
= - 0.45°C
Therefore,freezing point of a solution containing 5. 0 grams of KCl and 550.0 grams of water is - 0.45°C
Learn more about freezing point here;
brainly.com/question/3121416
#SPJ4