The Keq for the reaction N₂ + 3H2 = 2NH3 if the equilibrium concentrations are Keq = 1.5. The correct option is D.
<h3>What is Keq?</h3>
Keq is the ratio of the concentration of reactant to the concentration of the product.
The balanced equation is
N₂ + 3H₂ = 2NH₃
The equilibrium constant is ![\rm \dfrac{[NH_3]^2}{[N_2]\; [H_2]^3}](https://tex.z-dn.net/?f=%5Crm%20%5Cdfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5C%3B%20%5BH_2%5D%5E3%7D)
The given concentrations of the compounds have been:
Ammonia = 3 M
Nitrogen = 1 M
Hydrogen = 2 M

Thus, the correct option is D. Keq = 1.5.
Learn more about Keq
brainly.com/question/24059926
#SPJ1
Using ideal gas equation,

Here,
P denotes pressure
V denotes volume
n denotes number of moles of gas
R denotes gas constant
T denotes temperature
The values at STP will be:
P=1 atm
T=25 C+273 K =298.15K
V=663 ml=0.663L
R=0.0821 atm L mol ⁻¹
Mass of gas given=1.25 g g
Molar mass of gas given=?


Putting all the values in the above equation,

Molar mass of the gas=46.15
the chemical equation will be XY2
Answer:
Methane
Explanation:
The gas that you could keep in an outdoor storage tank in winter in Alaska is Methane.
The reason is the extreme low temperature during the winter. The boiling point of butane is 44 ºF ( -1ºC) and that of propane is a higher -43.6 º F but still within the range of average minimum winter temperature in Alaska (-50 ªF). Therefore we will have condensation in the tanks and not enough gas pressure.
Methane having a boling point of -259 ºF will not condense at the low wintertime temperatures in Alaska.
Limiting Reactant - The reactant in a Chemical Reaction that limits the amount of product that can be formed.
Excess Reactant - The reactant in a chemical reaction that remains when a reaction stops when the limiting reactant is completely consumed.
Theoretical Yield - The quantity of a product obtained from the complete conversion of the limiting reactant in a Chemical reaction.
I hope this helped make your question easier ^_^