It would be carbon dioxide because carbon dioxide makes up the vast majority of greenhouse gas .
Answer: a) 
b) 1 mole of
is produced.
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
The skeletal equation is:

The balanced equation will be:

Thus the coefficients are 2, 3 , 10 , 4 , 3 , 2 and 5.
b) Oxidation: 
Reduction: 
Net reaction: 
When 1 mole of
is produced, 1 mole of
is produced.
Answer:
The mole fraction of NaOH in an aqueous solution that contain 22.9% NaOH by mass=0.882
Explanation:
We are given that
Aqueous solution that contains 22.9% NaOH by mass means
22.9 g NaOH in 100 g solution.
Mass of NaOH(WB)=22.9 g
Mass of water =100-22.9=77.1
Na=23
O=16
H=1.01
Molar mass of NaOH(MB)=23+16+1.01=40.01
Number of moles =
Using the formula
Number of moles of NaOH

Molar mass of water=16+2(1.01)=18.02g
Number of moles of water

Now, mole fraction of NaOH
=

=0.882
Hence, the mole fraction of NaOH in an aqueous solution that contain 22.9% NaOH by mass=0.882
I would personally convert the 12 mg to g so I could see what I was working with. So 12 mg to grams is 0.012 g...
so 1 tablet is 0.012g. the patient needs 0.024 g.
so 0.024g/0.012g = 2 tablets or 0.012g X 2 is 0.024 g
hope this helps :)
Answer:
Yes.
Explanation:
It should be noted that the meaning of molarity is the ratio of moles of solute per liter of solution.
It should be understood that when determining or finding the molarity of an unknown compound ,the process should be performed or carried out at least 3 times. This is done to remove any form of doubt.
The first calculated value for the concentration of the compound will be regarded as rough value, while the second and the third will be regarded as the first and second values respectively.
In this case, the third value for the concentration of HCl will be calculated to for confirmation of other value, that is to be finally sure of its concentration.