1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arlecino [84]
3 years ago
9

Write 6.005 in expanded form

Mathematics
1 answer:
jenyasd209 [6]3 years ago
8 0

Answer:

6+0.005

Step-by-step explanation:

You might be interested in
Find the midpoint of segment JP, given J(-4,6) and P(-12,-2).
grin007 [14]

Answer:

The answer is

<h2>( - 8 , 2)</h2>

Step-by-step explanation:

The midpoint M of two endpoints of a line segment can be found by using the formula

<h3>M = ( \frac{x1 + x2}{2}  ,  \:  \frac{y1 + y2}{2} )</h3>

where

(x1 , y1) and (x2 , y2) are the points

From the question the points are

J(-4,6) and P(-12,-2)

The midpoint is

<h3>M = ( \frac{ - 4 - 12}{2}  ,  \:  \frac{6 - 2}{2} ) \\  = ( -  \frac{16}{2} ,  \:  \frac{4}{2} )</h3>

We have the final answer as

<h3>( - 8 , 2)</h3>

Hope this helps you

6 0
3 years ago
Solve 6x(6x) + 11x - 35 = 0
Murljashka [212]
36x^2 + 11x - 35=0\\\\ \frac{-b \pm  \sqrt{ b^2 -4( a)(c)} }{2(a)}\\\\  \frac{-11\pm  \sqrt{11^2 -4(36)(-35)} }{2(36)}\\ \\   \frac{-11\pm  \sqrt{5161 } }{72}\\\\\\ x = 0.8450013919812116\\\\ \text{   } x  = -1.1505569475367672
4 0
3 years ago
Read 2 more answers
1/2 - 1/5= ???
Aleonysh [2.5K]
Stop asking questons we are pretty much telling you the answer figure it out your self
6 0
3 years ago
Read 2 more answers
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
Joe spends 18.75% of his working day washing cars. He spends 1.5 hours washing cars. How many total hours does he work per day?
insens350 [35]

Answer:

8 hours

Step-by-step explanation:

Joe spends 18.75% of his working day washing cars.

Joe spends 1.5 hours washing car.

Therefore 18.75% is equal to 1.5 hour.

18.75% = 1.5 hour

1% = 1.5 ÷ 18.75 = 0.08 hour

100% = 0.08 x 100 = 8 hours

4 0
3 years ago
Other questions:
  • Which is 0.ModifyingAbove 54 with bar converted to a simplified fraction?
    13·2 answers
  • 6-45. THE TORTOISE AND THE HARE The tortoise and the hare are having a race. In this tale, the tortoise moves at 50 feet per hou
    8·1 answer
  • 0. For a button to fit through its buttonhole, the hole needs to be the size of the button's diameter. What size buttonhole is n
    6·1 answer
  • What does 1 3/4 ÷ 7/1 equal?
    15·1 answer
  • Can u help pretty pls and fast thank you
    10·1 answer
  • Factor the difference of cubes. Select prime if the polynomial cannot be factored
    14·1 answer
  • Find the volume of the prism below.
    9·1 answer
  • WILL GIVE EXTRA BRAINLST <br><br> HAVE A NICE DAy
    7·1 answer
  • The equation y-3=-2(x+5) is written in point-slope form. What is the y-intercept of the line?​
    5·1 answer
  • What is the total volume of both storage spaces if one side of the large storage space is 4 feet long?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!