Answer:
Selection is a directional process that leads to an increase or a decrease in the frequency of genes or genotypes. Selection is the process that increases the frequencies of plant resistance alleles in natural ecosystems through coevolution, and it is the process that increases the frequencies of virulence alleles in agricultural ecosystems during boom and bust cycles.
Selection occurs in response to a specific environmental factor. It is a central topic of population and evolutionary biology. The consequence of natural selection on the genetic structure and evolution of organisms is complicated. Natural selection can decrease the genetic variation in populations of organisms by selecting for or against a specific gene or gene combination (leading to directional selection). It can increase the genetic variation in populations by selecting for or against several genes or gene combinations (leading to disruptive selection or balancing selection). Natural selection might lead to speciation through the accumulation of adaptive genetic differences among reproductively isolated populations. Selection can also prevent speciation by homogenizing the population genetic structure across all locations.
Selection in plant pathology is mainly considered in the framework of gene-for-gene coevolution. Plant pathologists often think in terms of Van der Plank and his concept of "stabilizing selection" that would operate against pathogen strains with unnecessary virulence. As we will see shortly, Van der Plank used the wrong term, as he was actually referring to directional selection against unneeded virulence alleles.
Answer:
mice and humans share virtually the same set of genes
Explanation:
Almost every gene found in one species so far has been found in a closely related form in the other. Of the approximately 4,000 genes that have been studied, less than 10 are found in one species but not in the other.
Answer:
In an individual's molecular and cellular level, the heterozygote alleles are preferred over the homozygote alleles. In humans, the heterozygote alleles are found at a locus of beta polypeptide subunit of hemoglobin, while on the other hand, the homozygous alleles found at a similar locus are prone to sickle cell disease.
The individuals carrying homozygous alleles exhibit sickle-shaped RBCs and they also possess low oxygen-carrying capacity, which ultimately results in brain, kidney, or heart failure. However, in the case of heterozygous alleles, the configurations of RBCs are of two kinds, that is, normal shaped and sickle-shaped. Thus, there are not enough sickle-shaped cells to result in the condition.
The heterozygote alleles are resistant to malaria, thus, in tropical areas, where malaria is a prime issue the heterozygote alleles are preferred over the homozygote dominant alleles as they are vulnerable to the infection and over the homozygote recessive alleles who has sickle cell disease.
Answer:
(B) None of the answers are true...
Explanation:
(A) is wrong because the high levels of epinephrine promote activation of sympathetic nervous system that'll ultimately increase oxygen consumption.
(C) Elevated temperatures of body require immediate cooling that's why breathing rate gets high and ultimately the oxygen consumption.
(D) We all know that a vigorous dose of exercise always increases your bodies oxygen consumption.