Answer:
6000 ft
Step-by-step explanation:
Let length of rectangular field=x
Breadth of rectangular field=y
Area of rectangular field=
square ft
Area of rectangular field=![l\times b](https://tex.z-dn.net/?f=l%5Ctimes%20b)
Area of rectangular field=![x\time y](https://tex.z-dn.net/?f=x%5Ctime%20y)
![1500000=xy](https://tex.z-dn.net/?f=1500000%3Dxy)
![y=\frac{1500000}{x}](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B1500000%7D%7Bx%7D)
Fencing used ,P(x)=![x+x+y+y+y=2x+3y](https://tex.z-dn.net/?f=x%2Bx%2By%2By%2By%3D2x%2B3y)
Substitute the value of y
P(x)=![2x+3(\frac{1500000}{x})](https://tex.z-dn.net/?f=2x%2B3%28%5Cfrac%7B1500000%7D%7Bx%7D%29)
![P(x)=2x+\frac{4500000}{x}](https://tex.z-dn.net/?f=P%28x%29%3D2x%2B%5Cfrac%7B4500000%7D%7Bx%7D)
Differentiate w.r.t x
![P'(x)=2-\frac{4500000}{x^2}](https://tex.z-dn.net/?f=P%27%28x%29%3D2-%5Cfrac%7B4500000%7D%7Bx%5E2%7D)
Using formula:![\frac{dx^n}{dx}=nx^{n-1}](https://tex.z-dn.net/?f=%5Cfrac%7Bdx%5En%7D%7Bdx%7D%3Dnx%5E%7Bn-1%7D)
![P'(x)=0](https://tex.z-dn.net/?f=P%27%28x%29%3D0)
![2-\frac{4500000}{x^2}=0](https://tex.z-dn.net/?f=2-%5Cfrac%7B4500000%7D%7Bx%5E2%7D%3D0)
![\frac{4500000}{x^2}=2](https://tex.z-dn.net/?f=%5Cfrac%7B4500000%7D%7Bx%5E2%7D%3D2)
![x^2=\frac{4500000}{2}=2250000](https://tex.z-dn.net/?f=x%5E2%3D%5Cfrac%7B4500000%7D%7B2%7D%3D2250000)
![x=\sqrt{2250000}=1500](https://tex.z-dn.net/?f=x%3D%5Csqrt%7B2250000%7D%3D1500)
It is always positive because length is always positive.
Again differentiate w.r.t x
![P''(x)=\frac{9000000}{x^3}](https://tex.z-dn.net/?f=P%27%27%28x%29%3D%5Cfrac%7B9000000%7D%7Bx%5E3%7D)
Substitute x=1500
![P''(1500)=\frac{9000000}{(1500)^3}>0](https://tex.z-dn.net/?f=P%27%27%281500%29%3D%5Cfrac%7B9000000%7D%7B%281500%29%5E3%7D%3E0)
Hence, fencing is minimum at x=1 500
Substitute x=1 500
![y=\frac{1500000}{1500}=1000](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B1500000%7D%7B1500%7D%3D1000)
Length of rectangular field=1500 ft
Breadth of rectangular field=1000 ft
Substitute the values
Shortest length of fence used=![2(1500)+3(1000)=6000 ft](https://tex.z-dn.net/?f=2%281500%29%2B3%281000%29%3D6000%20ft)
Hence, the shortest length of fence that the rancher can used=6000 ft