X + k y = 1
k x + y = 1 / * ( - k )
----------------
x + k y = 1
- k² x - k y = - k
--------------------
x - k² x = 1 - k
x ( 1 - k² ) = 1 - k
x = ( 1 - k ) / ( 1 - k² ) = ( 1 - k ) / ( 1 - k ) ( 1 + k )
y = 1 - k( 1 - k )/( 1 - k² )
y = ( 1 - k ) / ( 1 - k² ) = ( 1 - k ) / ( 1 - k ) ( 1 + k )
a ) For k = - 1 this system has no solution.
b ) For k ≠ - 1 and k ≠ 1, the system has unique solution:
( x , y ) = ( 1/ (1 + k) , 1/( 1 + k ) ).
c ) For k = 1, there are infinitely many solutions.
Answer:
I'll be back
Step-by-step explanation:
I'm gonna go get pen and paper to work this out for you
Don't report, I'll say the answer in the comments
Answer:
0≥x<4
Step-by-step explanation:
first, let's look at this number line.
there is a closed circle at 0 and an open circle at 4. this means that 0 is included (≤ or ≥) and that 4 is not included (< or >).
these are the endpoints, meaning that in this compound inequality, the numbers next to the symbols are 0 and 4.
x is in the middle of this compound inequality.
0 x 4
now, we have to figure out the symbols in between. i wrote out our choices above for each number. the highlighted portion is greater than or equal to 0 and less than 4, so we can write this compound inequality as the following:
0≥x<4
x is greater than or equal to 0, but less than 4
This is a hard question because usually boys prefer apple juice