The parabola will show the vertex in the format: y-k = (x-h)^2, where the vertex point
lies at (h, k).

let's first put it in "y =" standard format:

Since we cannot get a perfect square out of this, we complete the square: a=1, b=2, c=3
(b/2)^2 = (2/2)^2 = 1, so

So there's +2 leftover, since 3-1=2; so:

Now we'll subtract the 2 from both sides to show our vertex:

where our vertex (h, k) is at (-1, 2)
Answer:
It would be -13
Step-by-step explanation:
L*W*H
take them all and multipy
Answer:
Enter a problem...
Algebra Examples
Popular Problems Algebra Solve by Substitution 3x-4y=9 , -3x+2y=9
3
x
−
4
y
=
9
,
−
3
x
+
2
y
=
9
Solve for
x
in the first equation.
Tap for more steps...
x
=
3
+
4
y
3
−
3
x
+
2
y
=
9
Replace all occurrences of
x
in
−
3
x
+
2
y
=
9
with
3
+
4
y
3
.
x
=
3
+
4
y
3
−
3
(
3
+
4
y
3
)
+
2
y
=
9
Simplify
−
3
(
3
+
4
y
3
)
+
2
y
.
Tap for more steps...
x
=
3
+
4
y
3
−
9
−
2
y
=
9
Solve for
y
in the second equation.
Tap for fewer steps...
Move all terms not containing
y
to the right side of the equation.
Tap for more steps...
x
=
3
+
4
y
3
−
2
y
=
18
Divide each term by
−
2
and simplify.
Tap for more steps...
x
=
3
+
4
y
3
y
=
−
9
Replace all occurrences of
y
in
x
=
3
+
4
y
3
with
−
9
.
x
=
3
+
4
(
−
9
)
3
y
=
−
9
Simplify
3
+
4
(
−
9
)
3
.
Tap for more steps...
x
=
−
9
y
=
−
9
The solution to the system of equations can be represented as a point.
(
−
9
,
−
9
)
The result can be shown in multiple forms.
Point Form:
(
−
9
,
−
9
)
Equation Form:
x
=
−
9
,
y
=
−
9
image of graph